Блок питания телевизора мп3 3 схема. Источник питания из телевизионного модуля

Главная / Разное

Нередко требуется «запитать» 12 вольтами радиолюбительскую конструкцию в бытовых условиях. На помощь приходят импульсные блоки питания от старых телевизоров третьего поколения (см. рис. 3.14) моделей «Славутич-Ц202», «Радуга-Ц257», «Чайка-Ц280Д» и аналогичных.

Схемотехника у них, как правило, универсальна, выходное напряжение 12 В такой источник питания обеспечит с полезным током до 0,8 А.

Выходное напряжение снимают с контактов:

2 - 135 В (для строчной развертки);

Контакты 1, 3, 6 разъема Х2 (АЗ) - так он обозначен на плате и на электрической схеме - объединены и подключены к «общему проводу». На рис. 3.15 представлена принципиальная схема модуля питания МП-3-3 (аналогичная модулю МП-3-1, используемому в некоторых моделях цветных телевизоров типового ряда ЗУСЦТ-61-1).

Рис. 3.14. Вид телевизионного модуля питания

Рис, 3.15. Электрическая схема модуля МП-3-3

Шнур питания к сети 220 В подключают к разъему XI.

Главное отличие между этими «родственными» блоками - в индикаторах: в более «свежем» МП-3-3 установлен светодиодный индикатор АЛ307БМ, а в более старом исполнении - газоразрядная лампа ИНС-1 - через ограничительный резистор по питанию 135 В. Если эти индикаторы после подачи питания на заведомо исправный МП-3 не горят (что часто бывает без подключенной нагрузки), значит, модуль питания требуется запустить искусственным способом. Для этого часто достаточно подключить между контактами 1 и 2 (по выходу 135 В) эквивалент нагрузки - постоянный резистор типа МЛТ-1 сопротивлением 6,8 кОм ±30%. После такой доработки импульсный генератор «запускается», трансформатор Т1 начинает негромко «петь», и модуль питания готов к работе по всему спектру выходных напряжений. Резистором R27 (обозначение на схеме и на плате) в небольших пределах можно подрегулировать напряжение по выходу 12 В. Устанавливать дополнительные фильтрующие оксидные конденсаторы (по выходу) нет необходимости, форма выходного напряжения на экране осциллографа имеет четкую прямую линию, не отягощенную наводками.

Наиболее вероятная причина отказов данных модулей питания «кроется» в неисправности транзистора блокинг-генератора КТ838 (VT4). На электрической схеме (рис. 3.15) приведены значения контрольных напряжений в различных точках, поэтому отремонтировать такой блок питания не составит труда любому радиолюбителю. А элементы для ремонта можно найти в «закромах», не затрачивая материальных средств на покупку новых радиодеталей, как неминуемо пришлось бы сделать при ремонте более компактных, но часто и более «капризных» импульсных адаптеров к современной радиоаппаратуре. В этом, несомненно, «морально устаревшие» модули питания типа МП-3 (различных модификаций) выигрывают у более современных, поэтому первые еще рано списывать со счетов.

Литература: Кашкаров А. П. Электронные устройства для уюта и комфорта.

Неплохое зарядное устройство с хорошими выходными характеристиками можно сделать из старых телевизоров с импульсными БП типа МП1, МП3-3, МП403 и др. Незначительная доработка блока позволяет использовать его для зарядки АКБ с током до 6-7А, ремонта автомагнитол и др.техники.

Зарядное устройство для АКБ из МП3-3

Вся суть переделки блока заключается в увеличении нагрузочной способности ТПИ и выпрямительных диодов, для этого обмотки с выводами 12,18 и 10,20 соединяем параллельно, вывод 20 подключается к общему выводу вторичных источников (12), а вывод 10- к выводу 18, диоды выпрямителей 12В и 15В отключаем и к выводам 10, 18 подключаем диод на ток 10- 25А, который необходимо установить на теплоотвод, для этих целей я использовал т.отвод от штатного стабилизатора на 12 В.

Детали которого за ненадобностью можно с платы (кроме т.отвода) убрать, на него можно поставить новый диод, параллельно ему подключаем кондёр на 470пф и на выходе элетролит на 470 мкф х 40В, параллельно ему ставим нагрузочный резистор МЛТ 2 номиналом 510- 680 ом и керамический конденсатор на 1 мкф, эти детали ставятся для исключения появления высокочастотного напряжения на выходе БП.

Для регулировки выходного напряжения можно использовать подстроечный резистор R2 по схеме, который выпаивается и вместо него подключаем выносной переменный проволочный резистор типа ППЗ 1- 1,5 ком, регулировка выходного напряжения от 13В до 18В.

Для вывода блока в режим стабилизации его необходимо нагрузить,для этого можно использовать лампу от холодильника,подключив её к выводам 6 и 18.

В своём блоке для подгрузки я использовал выход +28 В, подключив к нему лампу на 28 В 5вт, которая одновременно служит подсветкой шкалы вольтметра с растянутой шкалой от «пятёрки». Нагрев блока при нагрузке как в штатном режиме, но лучше будет если сделать принудительный обдув, поставив куллер от компьютера.
При подключении АКБ неоходимо соблюдать полярность и на выходе поставить предохранитель на 10А.

Особенности работы модуля питания МП-403

Чтобы успешно ремонтировать радиоэлектронную аппаратуру, в частности телевизоры, необходимо хорошо представлять себе работу блоков и узлов устройства, знать назначение их элементов. Например, импульсные источники питания вызывают, как правило, большие затруднения при ремонте. В публикуемой здесь статье автор рассказывает о работе модуля питания МП-403, применявшегося во многих моделях телевизоров.

Телевизионный модуль питания МП-403 уже был рассмотрен в с различной степенью подробности. Однако в не совсем точно описан процесс запуска модуля и не рассказано о его основном автоколебательном режиме (дана ссылка на модуль МП-1). В книге же из всего процесса запуска фактически пояснена только подача открывающего напряжения на базу ключевого транзистора VT9, а далее утверждается, что процессы запуска протекают так же, как в модуле МПЗ-3. Основной автоколебательный режим работы также не упоминается. Между тем при поиске неисправностей в импульсном модуле питания весьма важно знать работу в этих двух основных режимах. К сожалению, и начертание принципиальной схемы в обоих изданиях таково, что пользоваться ею неудобно.

В предлагаемой статье сделана попытка устранить названные пробелы, т. е. описать работу модуля при запуске, в установившемся автоколебательном режиме и в случае короткого замыкания пояснить назначение отдельных элементов и узлов, а также дать "читаемую" принципиальную схему. Она изображена на рисунке.

(нажмите для увеличения)

Устройство запуска модуля собрано на транзисторах VT4, VT6 и VT7. Два последних непосредственно обеспечивают запуск, а первый служит для их выключения при переходе модуля в автоколебательный режим.

После включения телевизора конденсатор С9 начинает заряжаться (через элементы R19, VD4, R14, R16) пульсирующим напряжением, образующимся на выпрямительном диоде VD7. Пока напряжение на конденсаторе С9 мало, транзистор VT4 закрыт. Транзистор VT7 открывается током базы, протекающим через резисторы R28, R25, R14, R16. На эмиттерный переход транзистора VT9 открывающее напряжение поступает через резисторы R28, R14, R16, транзистор VT7, эмиттерный переход транзистора VT6 и обмотку 5-3 трансформатора Т1. Транзистор VT9 начинает открываться.

Через обмотку 19-1 трансформатора протекает линейно нарастающий ток, который наводит в обмотке положительной обратной связи (ПОС) 5-3 ЭДС взаимоиндукции. Ток базы транзистора VT9, создаваемый обмоткой ПОС, проходит через элементы R27, VD11 и VT6. Коллекторный ток транзистора VT9, протекая через резисторы R14 и R16, обеспечивает на них нарастающее напряжение.

Достигнув определенного значения, напряжение на резисторах R14, R16 через цепь C5R11 (заряжая конденсатор) открывает тринистор VS1. Последний через дроссель L1, незаряженный конденсатор С7 и резисторы R14, R16 шунтирует эмиттерный переход транзистора VT9, замыкая часть тока обмотки 5-3 трансформатора на себя. В результате токи базы и коллектора транзистора VT9 уменьшаются, напряжение на обмотке 5-3 меняет полярность, транзистор и тринистор закрываются.

На вторичных обмотках трансформатора возникают импульсы напряжения, которые начинают заряжать конденсаторы фильтров вторичных выпрямителей. Так как токи зарядки большие (почти режим короткого замыкания), то напряжения на вторичных обмотках и обмотке ПОС (5-3) малы и быстро исчезают. Иначе говоря, энергия обмоток быстро передается незаряженным конденсаторам.

Снова током запуска через эмиттерный переход транзистора VT6 открывается транзистор VT9, насыщаясь затем током обмотки ПОС, открывается тринистор и закрывает транзистор VT9 и себя. Следовательно, происходит некоторое число циклов включения и выключения транзистора VT9, в течение которых конденсаторы С28, C31, C32, C34, C35 вторичных выпрямителей заряжаются до напряжений, близких к номинальным. Токи их подзарядки приобретают вид импульсов, экспоненциально снижающихся до нуля, что позволяет выйти модулю из режима короткого замыкания.

К этому времени конденсатор С9 успевает зарядиться до напряжения открывания транзистора VT4. Его коллекторный ток увеличивает падение напряжения на резисторе R28 и закрывает транзисторы VT7 и VT6 устройства запуска. Модуль переходит в автоколебательный режим работы, при котором уже заряжены конденсаторы С5, С7 (через диод VD6 от обмотки ПОС) и С8.

В установившемся режиме при открывании транзистора VT9 линейно нарастающий ток протекает через него так же, как и при запуске. На резисторах R14, R16 создается такое же по форме напряжение, которое складывается алгебраически с напряжением на конденсаторе С5 и через делитель R11R13 воздействует на управляющий электрод тринистора VS1. Пока сумма напряжений не станет положительной и не превысит некоторого значения (около 0,6 В), последний закрыт. Напряжение ПОС обмотки 5 - 3 создает ток базы транзистора VT9 через резистор R20 и транзистор VT5, поддерживая транзистор VT9 в открытом состоянии.

Транзистор VT5 служит узлом пропорционального управления током базы транзистора VT9. Кроме того, через него заряжаются конденсаторы С5, С8 и происходит открывание транзистора VT9. В установившемся режиме транзистор VT5 открыт напряжением конденсатора С5, приложенным через резисторы R17 и R20 к его эмиттерному переходу.

Увеличивающееся напряжение с резисторов R14, R16 через элементы С8 и R20 воздействует на эмиттерный переход транзистора VT5, пропорционально уменьшая его сопротивление проходящему через него току базы транзистора VT9, что обеспечивает примерно постоянную степень насыщения транзистора VT9 при увеличении тока его коллектора. Когда коллекторный ток транзистора VT9 увеличивается примерно до 3,5 А, сумма напряжений на резисторах R14, R16 и конденсаторе С5 становится достаточной для открывания тринистора VS1. Через него, дроссель L1 и резисторы R14, R16 напряжение на конденсаторе С7 приложено в закрывающей полярности к эмиттерному переходу транзистора VT9. Ток разрядки конденсатора направлен встречно току базы транзистора и превышает последний. Транзистор VT9 очень быстро закрывается, цепь разрядки конденсатора С7 через тринистор прерывается, ток последнего уменьшается, вызывая его закрывание.

На коллекторе транзистора VT9 и обмотках возникают импульсы напряжения, через обмотки протекают токи, которые подзаряжают конденсаторы фильтров. Уменьшаясь, они наводят на обмотке 5-3 напряжение ПОС (плюсом на выводе 5). Оно открывает коллекторный переход транзистора VT5 через резистор R17, диод VD5 и дроссель L1. В результате транзистор VT5 открывается в обратном направлении. При этом ток зарядки конденсатора С5 протекает через транзистор и элементы R20, VD5, L1. Одновременно подзаряжаются конденсаторы С7 (через диод VD6 и дроссель L1) и С8 (через коллекторный переход транзистора VT5 и резисторы R14, R16, R26).

Напряжением ПОС обмотки 5-3 транзистор VT9 поддерживается в закрытом состоянии через открытый в обратном направлении транзистор VT5 и резистор R20.

Когда токи подзарядки конденсаторов фильтров вторичных выпрямителей уменьшаются до нуля, напряжение на обмотке 5-3 также становится равным нулю. В этот момент напряжение конденсатора С5 открывает эмиттерный переход транзистора VT5 через резисторы R20 и R17, открывая сам транзистор в прямом направлении. Одновременно напряжение конденсатора С8 проходит через его коллекторный переход и обмотку 5-3 на эмиттерный переход транзистора VT9. При этом возникает начальный ток базы последнего и снова начинается нарастание его коллекторного тока под действием ПОС.

В режиме короткого замыкания во вторичной цепи при закрывании транзистора VT9 вся накопленная трансформатором Т1 магнитная энергия поглощается цепью, замыкающей вторичную обмотку. Ток нагрузки спадает намного медленнее, чем в нормальном режиме, из-за чего в обмотке ПОС 5-3 трансформатора практически перестает наводиться ЭДС (плюсом на выводе 5). Это вызывает не только прекращение зарядки конденсатора С8, но даже и его перезарядку в обратном направлении напряжением конденсатора С5 через резисторы R14, R16 и R17.

Так как транзисторы VT6, VT7 устройства запуска закрыты постоянно насыщенным транзистором VT4, транзистор VT9 не имеет никакого источника напряжения для первоначального открывания, а даже, наоборот, закрыт напряжением конденсатора С5 через резистор R17, коллекторный переход транзистора VT5 и обмотку 5-3 трансформатора Т1.

Следовательно, в отличие от модуля МПЗ-3, который при коротком замыкании работает в режиме коротких импульсов, модуль МП-403 полностью выключен. Поэтому если модуль питания был выключен узлом искусственного короткого замыкания на элементах VD16, R31, VT11, то для его повторного включения должен быть разряжен конденсатор С9. Для этого следует отключить телевизор от сети и затем снова включить через 5...10 с.

Назначение узлов и элементов модуля:

  • VD7-VD10, С10-С13, С17, С18 - выпрямитель напряжения сети;
  • VT1, VD3, С2, VD1, R5, R1-R3, С1, R7, С4 - узел стабилизации выходных напряжений;
  • VT2, VT3, R9, R6, R4 - устройство защиты от перенапряжений при неисправностях в узле стабилизации;
  • VT11, R31, VD16 - узел создания искусственного короткого замыкания для выключения модуля при неисправности строчной развертки (модуль МР-403) или по сигналу из блока управления;
  • VT13-VT15, VD18, R33, R34, R37- R39 - стабилизатор напряжения +12 В;
  • VT9 - силовой импульсный транзисторный ключ;
  • VS1 - тринистор управления моментом закрывания транзистора VT9;
  • С7 - конденсатор для закрывания транзистора VT9 через открытый тринистор (особенностью его работы следует указать то, что во время запуска ток через него течет в направлении, противоположном его паспортной полярности, что необходимо учитывать при оценке его надежности);
  • VD6 - коммутационный диод для зарядки конденсатора С7;
  • С5 - конденсатор для создания отрицательного напряжения смещения на управляющем электроде тринистора;
  • VD5 - коммутационный диод для зарядки конденсатора С5;
  • VD4 - диод, служащий для того, чтобы при запуске ток зарядки конденсатора С9 не проходил через управляющий электрод тринистора VS1 и не заряжал конденсатор С5 в обратном направлении;
  • С8 - конденсатор для начального открывания транзистора VT9 в автоколебательном режиме, входит вместе с элементами VT5 и R20 в узел пропорционального управления током транзистора VT9;
  • VT5 - коммутирующий транзистор узла пропорционального управления током базы транзистора VT9, обеспечивает зарядку конденсаторов С5 и С8;
  • R14, R16 - резисторы датчика тока транзистора VT9.

Действие устройства защиты модуля подробно описано в , , а работа узла стабилизации в автоколебательном режиме при номинальной нагрузке и на холостом ходу не имеет никаких отличий от применяемого аналогичного устройства в модуле питания МПЗ-3.

Литература

  1. Потапов А., Кубрак С, Гармаш А. Модуль питания МП-403. - Радио, 1991, №6, с. 44-46.
  2. Соколов В. С, Пичугин Ю. И. Ремонт цветных стационарных телевизоров 4УСЦТ. Справочное пособие. - М.: Радио и связь, 1995, с. 30-33.

Смотрите другие статьи раздела .

Глава 3. Схемы импульсных блоков питания.

В этой статье рассмотрим схему, управление ключом в которой сделано по другому принципу. Данная схема с незначительными изменениями применена во многих телевизорах, таких как Akai CT-1405E, Elekta CTR-2066DS и других.

На транзисторе Q1 собрано устройство сравнения, схема его ничем не отличается от других, рассмотренных раньше. Только здесь применен транзистор n-p-n, в результате поменялась полярность включения. Питается схема сравнения от отдельной обмотки от выпрямителя D5 с фильтром C2. Начальное смещение на ключ Q4 подается через резистор R7, обычно представляющий собой несколько последовательно включенных резисторов, что объясняется, по-видимому, лучшей теплоотдачей, исключением пробоя между выводами (все-таки падение напряжения на нем 300 В) или технологичностью сборки. Я сам путем не знаю, для чего это делается, но в импортной аппаратуре такое видишь сплошь и рядом.

Цепь обратной связи подключена здесь не таким способом, какие мы разбирали раньше. Один вывод обмотки обратной связи подключается как обычно, к базе ключа, а другой – на диодный распределитель D3,D4.

Что получается в результате? Транзисторы Q2 и Q3 представляющие собой составной транзистор, являются регулируемым сопротивлением. Это сопротивление (между плюсом конденсатора С3 и эмиттером Q3) зависит от приходящего с Q1 сигнала ошибки. Так как транзистор Q2 проводимости p-n-p, то с увеличением приходящего на его базу напряжения его ток уменьшается, транзистор Q3 призакрывается, то есть сопротивление составного транзистора увеличивается. Это свойство схемы и используется.

Рассмотрим момент запуска. Конденсатор C3 разряжен. Цепь обратной связи подключена плюсом к базе, минусом через D4 и R9 с общим проводом. Происходит процесс линейного нарастаниятока коллектора, который заканчивается насыщением ключа и его закрыванием. При этом полярность напряжения на обмотке обратной связи меняется на обратную и этим напряжением через диод D3 заряжается конденсатор C3. Когда энергия трансформатора израсходуется, конденсатор С3 окажется подключенным к переходу база-эмиттер ключа через сопротивление составного транзистора минусом на базу и закроет ключ.

Время разряда С3 и величина закрывающего потенциала зависят от величины сопротивления составного транзистора. В момент запуска блока питания это сопротивление большое и разряд конденсатора С3 не задерживает очередной цикл, однако в установившемся режиме задержка очередного цикла получается достаточна для регулировки средней мощности, отдаваемой в нагрузку. Таким образом мы видим, что рассматриваемая схема не совсем ШИМ. Если в предыдущих схемах регулированию подвергалось время открытого состояния ключа, то в данной схеме регулируется время закрытого состояния ключа.

Рис 2

На рисунке показан путь разряда конденсатора С3. В момент времени t0 начинается нарастание тока коллектора ключа и продолжается до момента t1. На этом отрезке времени напряжение Uбэ ключа нарастает. На заряде С3 это никак не отражается, так как к обмотке обратной связи С3 подключен через закрытый в этот момент диод D3. Как только рост коллекторного тока ключа заканчивается, полярность напряжения на обмотке обратной связи меняется на обратную, диод D3 открывается и начинается заряд С3. Одновременно через сопротивление составного транзистора Rсост это напряжение прикладывается к переходу база-эмиттер ключа, надежно запирая его. Заряд С3 продолжается до момента времени t2, то есть пока накопленная энергия трансформатора не перейдет в нагрузку. В этот момент заряженный С3 через Rсост и открывшийся диод D4 окажется подключенным к переходу база-эмиттер ключа. На приведенном рисунке видно, как делится напряжение заряженного конденсатора С3 между сопротивлением составного транзистора Rсост (Uсост) и сопротивлением участка база-эмиттер ключа Rкл (Uбэ), которое определяется суммой сопротивлений R9 и сопротивления открытого диода D4. Сопротивление резисторов R6, R9 и R10 мало и их можно не принимать во внимание. При большом сопротивлении Rсост разряд С3 происходит медленнее и порог открывания ключа будет достигнут позже, чем при малом Rсост. В момент времени t3 напряжение С3 уменьшится до такой величины, что запирающее напряжение на базе ключа исчезнет и цикл повторится. Так сопротивление составного транзистора участвует в процессе.

Схемы отечественных импульсных блоков питания.

Подавляющее большинство схем отечественных ИБП построены по одинаковой схеме, по одному принципу и различаются лишь схемой запуска, да величинами выходных напряжений вторичных выпрямителей. И еще одна особенность – отечественные ИБП не предназначены для работы в дежурном режиме (то есть в режиме практически холостого хода). Во всех ИБП имеются защиты от перегрузки и короткого замыкания в нагрузке, от недонапряжения в сети ниже 160 В, холостого хода. В некоторых моделях с дистанционным управлением выключение ИБП производится с помощью искусственно создаваемой перегрузки, в этом случае срабатывает защита по перегрузке и срывается генерация.

Так как еще имеется очень много отечественных телевизоров с такими ИБП, я расскажу о них более подробно, несмотря на то, что буду кое в чем повторяться. То, о чем я буду рассказывать, относится ко всем моделям ИБП, построенным на дискретных элементах. Отечественные ИБП, построенные с применением микросхемы К1033ЕУ1 (аналог TDA4601) рассмотрим в следующей главе, в которой опишу работу ИБП на микросхемах. Более новые ИБП, в которых применены разработки зарубежных производителей, я здесь рассматривать не буду.

Принципиальная схема модуля питания МП-3-3

Рассмотрим принципиальную схему модуля питания МП-3-3. В состав модуля входит низковольтный выпрямитель (диоды VD4-VD7), формирователь импульсов запуска (VT3), импульсный генератор (VT4), устройство стабилизации (VT1), устройство защиты (VT2), импульсный трансформатор Т1, выпрямители на диодах VD12-VD15, стабилизатор напряжения 12 B (VT5-VT7).

Рис 3

Импульсный генератор собран по схеме автогенератора с коллекторно-базовыми связями на транзисторе VT4. При включении телевизора постоянное напряжение с выхода фильтра сетевого выпрямителя (конденсаторов С16, С19, С20) через обмотку 19-1 трансформатора Т1 поступает на коллектор транзистора VT4. Одновременно сетевое напряжение с диода VD7 через резисторы R8 и R 11 заряжает конденсатор С7, а также поступает на эмиттер транзистора VT2, где оно используется в устройстве защиты модуля питания от пониженного напряжения сети. Когда напряжение на конденсаторе С7, приложенное между эмиттером и базой 1 однопереходного транзистора VT3, достигает значения 3 В, транзистор VT3 открывается. Конденсатор С7 начинает разряжаться по цепи: переход эмиттер-база транзистора VT3, эмиттерный переход транзистора VT4, параллельно соединенные резисторы R14 и R16, .конденсатор С7.

Ток разрядки конденсатора С7 открывает транзистор VT4 на время 10...15 мкс, достаточное, чтобы ток в его коллекторной цепи возрос до 3...4 А. Протекание коллекторного тока транзистора VT4 через обмотку намагничивания 19-1 сопровождается накоплением энергии в магнитном поле сердечника. После окончания разрядки конденсатора С7 транзистор VT4 закрывается. Прекращение коллекторного тока вызывает в катушках трансформатора Т1 появление ЭДС самоиндукции, которая создает на выводах 6, 8, 10, 5 и 7 трансформатора Т1 положительное напряжение. При этом через диоды однополупериодных выпрямителей во вторичных цепях VD12-VD15 протекает ток.

При положительном напряжении на выводах 5, 7 трансформатора Т1 конденсаторы С14 и С6 заряжаются соответственно в цепях анода и управляющего электрода тиристора VS1 и С2 в эмиттерно-базовой цепи транзистора VT1.

Конденсатор С6 заряжается по цепи: вывод 5 трансформатора Т1, диод VD11, резистор R 19, конденсатор С6, диод VD9, вывод 3 трансформатора. Конденсатор С14 заряжается по цепи: вывод 5 трансформатора Т1, диод VD8, конденсатор С14, вывод 3 трансформатора. Конденсатор С2 заряжается по цепи: вывод 7 трансформатора Т1, резистор R13, диод VD2, конденсатор С2, вывод 13 трансформатора.

Аналогично осуществляются последующие включения и выключения транзистора VT4 автогенератора. Причем несколько таких вынужденных колебаний оказывается достаточным, чтобы зарядить конденсаторы во вторичных цепях. С окончанием зарядки этих конденсаторов между обмотками автогенератора, подсоединенными к коллектору (выводы 1, 19) и к базе (выводы 3, 5) транзистора VT4, начинает действовать положительная обратная связь. При этом автогенератор переходит в режим автоколебаний, при котором транзистор VT4 будет автоматически открываться и закрываться с определенной частотой.

В открытом состоянии транзистора VT4 его коллекторный ток протекает от плюса конденсатора С16 через обмотку трансформатора Т1 с выводами 19, 1, коллекторный и эмиттерный переходы транзистора VT4, параллельно включенные резисторы R14, R16 к минусу конденсатора С16. Из-за наличия в цепи индуктивности нарастание коллекторного тока происходит по пилообразному закону.

Для исключения возможности выхода из строя транзистора VT4 от перегрузки сопротивление резисторов R14 и R16 подобрано таким образом, что, когда ток коллектора достигает значения 3,5 А, на них создается падение напряжения, достаточное для открывания тиристора VS1. При открывании тиристора конденсатор С14 разряжается через эмиттерный переход транзистора VT4, соединенные параллельно резисторы R14 и R16, открытый тиристор VS1. Ток разрядки конденсатора С14 вычитается из тока базы транзистора VT4, и транзистор преждевременно закрывается.

Дальнейшие процессы в работе автогенератора определяются состоянием тиристора VS1. Более раннее или более позднее его открывание позволяет регулировать время нарастания пилообразного тока и тем самым - количество энергии, запасаемой в сердечнике трансформатора.

Модуль питания может работать в режиме стабилизации и в режиме короткого замыкания.

Режим стабилизации определяется работой УПТ на транзисторе VT1 и тиристоре VS1. При сетевом напряжении 220 В, когда выходные напряжения вторичных источников питания достигнут номинальных значений, напряжение на обмотке трансформатора Т1 (выводы 7, 13) возрастет до значения, при котором постоянное напряжение на базе транзистора VT1, куда оно поступает через делитель R1-R3, становится более отрицательным, чем на эмиттере, куда оно передается полностью. Транзистор VT1 открывается по цепи: вывод 7 трансформатора, R13, VD2, VD1, эмиттерный и коллекторный переходы транзистора VT1, R6, управляющий электрод тиристора VS1, R14-R16, вывод 13 трансформатора. Ток транзистора, суммируясь с начальным током управляющего электрода тиристора VS1, открывает его в тот момент, когда выходное напряжение модуля достигает номинальных значений, прекращая нарастание коллекторного тока.

Изменяя напряжение на базе транзистора VT1 подстроечным резистором R2, можно регулировать напряжение на резисторе R10 и, следовательно, изменять момент открывания тиристора VS1 и продолжительность открытого состояния транзистора VT3, т. е. устанавливать выходные напряжения вторичных источников питания.

При увеличении напряжения сети (либо уменьшении тока нагрузки) возрастает напряжение на выводах 7, 13 трансформатора Т1. При этом увеличивается отрицательное напряжение базы по отношению к эмиттеру транзистора VT1, вызывая возрастание коллекторного тока и падения напряжения на резисторе R10. Это приводит к более раннему открыванию тиристора VS1 и закрыванию транзистора VT4, мощность, отдаваемая во вторичные цепи, уменьшается.

При понижении напряжения сети (либо увеличении тока нагрузки) соответственно меньше становится напряжение на обмотке трансформатора Tl и потенциал базы транзистора VT1 по отношению к эмиттеру. Теперь из-за уменьшения напряжения, создаваемого коллекторным током транзистора VT1 на резисторе R10, тиристор VS1 открывается в более позднее время и количество энергии, передаваемой во вторичные цепи, возрастает.

Существенную роль в защите транзистора VT4 играет каскад на транзисторе VT2, При уменьшении напряжения сети ниже 150 В напряжение на обмотке Т1 с выводами 7, 13 оказывается недостаточным для открывания транзистора VT1. При этом устройство стабилизации и защиты не работает и создается возможность перегрева транзистора VT4 из-за перегрузки. Чтобы предотвратить выход из строя транзистора VT4, необходимо прекратить работу автогенератора. Предназначенный для этой цели транзистор VT2 включен таким образом, что на его базу подается постоянное напряжение с делителя R18, R4, а на эмиттер - пульсирующее напряжение частотой 50 Гц, амплитуда которого стабилизируется стабилитроном VD3. При уменьшении напряжения сети уменьшается напряжение на базе транзистора VT2. Так как напряжение на эмиттере стабилизировано, уменьшение напряжения на базе приводит к открыванию транзистора. Через открытый транзистор VT2 трапецеидальные импульсы с диода VD7 попадают на управляющий электрод тиристора, открывая его на время, определяемое длительностью трапецеидального импульса. Это прекращает работу автогенератора.

Режим короткого замыкания возникает при наличии короткого замыкания в нагрузке вторичных источников питания. Запуск модуля в этом случае производится запускающими импульсами от устройства запуска (транзистор VT3), а выключение - с помощью тиристора VS1 по максимальному току коллектора транзистора VT4. После окончания запускающего импульса устройство не возбуждается, поскольку вся энергия расходуется короткозамкнутой цепью.

После снятия короткого замыкания модуль входит в режим стабилизации.

Выпрямители импульсных напряжений, подсоединенные ко вторичной обмотке трансформатора Т1, собраны по однополупериодной схеме.

Выпрямитель на диоде VD12 создает напряжение 130 В для питания модуля строчной развертки. Пульсации этого напряжения сглаживаются конденсатором С27. Резистор R22 устраняет возможность значительного повышения напряжения на выходе выпрямителя при отключении нагрузки.

На диоде VD13 собран выпрямитель напряжения 28 В, предназначенный для питания модуля кадровой развертки. Фильтр на его выходе образован конденсатором С28 и дросселем L2.

Выпрямитель напряжения 15 В для питания УЗЧ собран на диоде VD15 и конденсаторе С30.

Напряжение 12 В, используемое в блоке управления, модуле цветности, модуле радиоканала и модуле кадровой развертки, создается выпрямителем на диоде VD14 и конденсаторе С29. На выходе этого выпрямителя включен компенсационный стабилизатор напряжения. В его состав входят регулирующий транзистор VT5, усилитель тока VT6 и управляющий транзистор VT7. Напряжение с выхода стабилизатора через делитель R26, R27 поступает на базу транзистора VT7. Переменный резистор R27 предназначен для установки выходного напряжения. В эмиттерной цепи транзистора VT7 напряжение на выходе стабилизатора сравнивается с опорным напряжением на стабилитроне VD16. Напряжение с коллектора VT7 через усилитель на транзисторе VT6 поступает на базу транзистора VT5, включенного последовательно в цепь выпрямленного тока. Это приводит к изменению его внутреннего сопротивления, которое в зависимости от того, увеличилось или уменьшилось выходное напряжение, либо возрастает, либо понижается. Конденсатор С31 предохраняет стабилизатор от возбуждения. Через резистор R23 поступает напряжение на базу транзистора VT7, необходимое для его открывания при включении и восстановлении после короткого замыкания. Дроссель L3 и конденсатор С32 - дополнительный фильтр на выходе стабилизатора.

© 2024 baraxlo2020.ru -- Немного о компьютере и современных гаджетах