Быстрый ацп. Аналого-цифровое преобразование для начинающих

Главная / Windows 8

12 09 2013 - Норвуд, штат Массачусетс, США

    Компания Analog Devices, Inc. (NASDAQ: ADI) представила 18-разрядный аналого-цифровой преобразователь (АЦП) семейства PulSAR® с пропускной способностью 5 миллионов отсчетов в секунду (MSPS), что в два раза превышает быстродействие любого доступного на сегодняшний день преобразователя последовательного приближения (successive-approximation register, SAR). Благодаря передовой пропускной способности, наилучшему среди продуктов данного класса шумовому порогу и высокой линейности АЦП AD7960 PulSAR отлично подходит для применения в малопотребляющих схемах, мультиплексированных системах, например, в цифровых приборах рентгенографии, а также устройствах с избыточной дискретизацией, включая приборы для спектроскопии, управления градиентом в магнитно-резонансной томографии и хроматографического анализа газов.

    В отличие от других 18-разрядных АЦП, в которых повышение частоты дискретизации достигается ценой роста потребляемой мощности и ухудшения точности, AD7960 потребляет 39 мВт при частоте дискретизации 5 MSPS и оптимизирован для поддержания превосходной линейности в статическом режиме (интегральная нелинейность +/- 0.8 LSB) и высоких динамических характеристик (отношение сигнал-шум 99 дБ) даже при максимальном быстродействии. Этот новый преобразователь также обладает наилучшим среди продуктов данного класса отношением шумового порога (22.4 нВ/√Гц) к полной шкале входного сигнала. Малые габариты корпуса помогают разработчикам уложиться в жесткие требованиям к размерам, тепловым характеристикам и энергопотреблению, которые характерны для систем с большим количеством каналов.

    Также компания Analog Devices представила 16-разрядный АЦП семейства PulSAR AD7961, который поддерживает превосходные показатели отношения сигнал-шум (95.5 дБ) и интегральной нелинейности (+/- 0.2 LSB) при быстродействии 5 MSPS.

    • Загрузите техническое описание, посмотрите видеоматериал, закажите образцы и оценочные платы:
    • Типовое схемотехническое решение Circuits from the Lab: Прецизионная, малопотребляющая 18-разрядная сигнальная цепочка для системы сбора данных с быстродействием 5 MSPS
    • Общайтесь с другими разработчиками и экспертами по продуктам компании Analog Devices в онлайн-сообществе технической поддержки EngineerZone™:

    АЦП PulSAR AD7960 и AD7691 ориентированы на системы сбора данных

    Совместимые по выводам АЦП PulSAR AD7961 и AD7960 позволяют создавать легко модифицируемые 16-/18-разрядные системы сбора данных для промышленности и здравоохранения. Они имеют конфигурируемый, малошумящий интерфейс LVDS (low-voltage differential signaling), который позволяет получать данные из преобразователя на скоростях до 300 МГц.

    Цена и доступность для заказа

    Продукт
    Доступность образцов/ Серийное производство Разрешение
    ОСШ (тип.)
    Темп. диапазон
    Цена за штуку при заказе 1000 штук Корпус
    AD7960
    Сейчас
    18 бит
    от -40°C до 85°C
    $31.00

    32-выводный LFCSP

    AD7961
    Сейчас
    16 бит
    95.5 дБ
    от -40°C до 85°C
    $21.00

    32-выводный LFCSP

    AD7960 может быть использован совместно с малопотребляющим усилителем ADA4897 с rail-to-rail диапазоном выходных напряжений (размах напряжения до напряжений питания) , усилителем AD8031 с rail-to-rail диапазоном входных и выходных напряжений , а также источниками опорного напряжения ADR4540 или ADR4550 для построения полнофункциональной малопотребляющей, прецизионной сигнальной цепочки.

  • О компании Analog Devices
    • Инновации, высокие технические характеристики и непревзойденное качество продукции - вот те фундаментальные основы, которые позволили компании Analog Devices на протяжении многих лет быть одной из наиболее финансово успешных компаний на рынке электронных компонентов. Мировой лидер в области технологий обработки сигналов и преобразования данных, компания Analog Devices сотрудничает с более чем 60000 потребителей практически во всех отраслях электронной промышленности. Штаб-квартира Analog Devices находится в Норвуде, штат Массачусетс, США, а дизайн-центры и производственные площадки рассредоточены по всему миру. Компания Analog Devices включена в биржевой индексный список S&P 500.
  • Подпишитесь на журнал , еженедельный технический журнал ADI.

    PulSAR является зарегистрированной торговой маркой компании Analog Devices, Inc.

  • Редакторы - контактная информация:

Будьте в курсе

Расширение сетей беспроводной передачи данных с использованием все более высоких несущих частот и скоростей передачи данных ставит все более актуальные задачи усовершенствования оцифровки сигналов. Это означает, что возрастает спрос на более усовершенствованные аналого-цифровые преобразователи АЦП. Для удовлетворения современных требований появились аналого-цифровые преобразователи с частотой дискретизации более 1 ГГц. В данной статье будет рассматриваться использование более быстрых АЦП при разработке новых приложений, а также при модернизации старых.

Вспоминаем правило Найквиста

При выборе аналого-цифрового преобразователя для высокочастотного устройства следует помнить, что частота дискретизации АЦП должна быть в два или более раза выше пропускной способности сигнала, подлежащего оцифровке. Такую частоту дискретизации называют частотой Найквиста. Обратите внимание, что используется термин «пропускная способность», а не «частота». Если входной сигнал отличен от синусоиды, то он считается комплексным. Например, импульс, который состоит из основной синусоиды и кратных гармоник в соответствии с теоремой Фурье. Модулированные сигналы также содержат широкий диапазон частот, которые необходимо учитывать при выборе частоты дискретизации.

Рассмотрим прямоугольную волну, состоящую из основной частоты синусоидальной волны и бесконечного числа нечетных гармоник. Для прямоугольного сигнала с частотой 300 МГц частота дискретизации АЦП должна быть как минимум в два раза больше частоты пятой гармоники, или 3 ГГц. Более сложные сигналы, такие как радарные или модулированные сигналы, требуют аналогично высоких темпов обработки, чтобы точно улавливать все детали сигнала.

Примером может послужить приемное устройство станции обработки LTE Advanced сигналов, которые используют агрегацию носителей для более высокой пропускной способности и увеличения скорости передачи данных. Несколько стандартных 20 МГц LTE каналов группируют для обеспечения 40-, 80-, 160 МГц полосы пропускания, чтоб обеспечить более высокую пропускную способность OFDM.

Применение высокоскоростных АЦП в различных системах

В основном высокоскоростные АЦП применяются в программно-определяемых устройствах радиосвязи (SDR). Большинство современных SDR используют архитектуру прямого преобразования (zero IF), в которой входной сигнал оцифровывается непосредственно уже после фильтрации и усиления. При работе с сигналами дециметровой или высокой частоты (ДМВ или СВЧ) аналого – цифровой преобразователь должен иметь высокую частоту дискретизации. Один из примеров – сотовый приемник базовой станции.

Также высокоскоростные АЦП могут применятся и в других системах, таких как системы РЭБ (радиоэлектронной борьбы), записывающих RF системах, в радиолокационном оборудовании. Очень часто применяют высокоскоростные аналого-цифровые преобразователи и в измерительной технике, оборудовании рефлектомерии (OTDR). Является важной частью приемников цифровых предыискажений, используемых в линейных радиочастотных усилителях мощности.

Ниже показана блок схема ADC32RF45 Texas Instruments используемая в SDR приемниках прямого преобразования:

Входной полосовой фильтр выбирает требуемый сигнал, малошумящий усилитель усиливает его, после чего сигнал попадает на цифровой усилитель с переменным коэффициентом усиления, который обеспечивает надлежащий уровень входного сигнала для аналого-цифрового преобразователя. Внеполосные фильтры предотвращают наложения спектров. АЦП работает с внешним синтезатором PLL и очистителем джиттера. Он подключается к процессору DSP с помощью интерфейса JESD2048.

Среди продуктов, которые используют ADC32RF45, присутствуют и Pentek’s FlexorSet Software Radio Modules. Данные модули разработаны для помощи инженерам при проектировании специализированного оборудования связи и для проведения экспериментов с различным оборудованием SDR. Модули предлагают два канала АЦП и два канала ЦАП (). Xilinx FPGA с внутренним программным обеспечением для сбора данных и генерации сигнала ЦАП облегчает проведение экспериментов.

Требования при проектировании

Наиболее важным этапом проектирования с применением ADC32RF45 будет правильный подбор элементов входной цепи. В частности, сглаживающие внеполосные фильтры должны соответствовать входному сопротивлению АЦП. Это имеет важное значение для обеспечения максимума в полосе плоскостности фильтра и желательно вне зоны отторжения.

Для упрощения проекта рекомендуется использовать S параметры (параметры рассеивания). S-параметры в частотной области связанны с величинами моделирования поведения радиочастотных схем и компонентов. Эти комплексные значения, как правило, представлены в матричной форме, которой можно манипулировать, чтобы проиллюстрировать поведение и производительность схем и компонентов. Они предпочтительнее при проектировании систем связанных с линиями передач, фильтров и других высокочастотных устройств.

Кроме того, полная эталонная конструкция с модулем оценки (EVM) поможет ускорить и упростить процесс проектирования.

Если в структуре АЦП прямого взвешивания компараторы заменить линейными усилителями, а выходные напряжения каждого сравнивать с помощью ряда компараторов с несколькими опорными напряжениями, можно увеличить входной импеданс. Правда, при этом число компараторов и логических вентилей в схеме декодирования не уменьшится.

Hewlett-Packard запатентовала новый метод, названный аналоговым декодированием, теоретически позволяющий для N-разрядного аналого-цифрового преобразования использовать только N компараторов, защелок и логических элементов XOR .

В основе метода лежит использование аналоговых схем декодирования, работающих на нескольких уровнях, в отличие от обычных компараторов, работающих на одном.

2.4. Кодирование выходных сигналов

В АЦП прямого взвешивания выходы компараторов, опорные напряжения которых меньше входного сигнала, находятся в состоянии 1, а у тех, опорные напряжения которых больше входного, - в состоянии 0. По аналогии с ртутным термометром такой выходной код называют термометрическим. При изменении входного сигнала в каждый момент времени изменяться состояние только одного компаратора. Однако моменты срабатывания последних и приходов тактовых импульсов триггеров-защелок независимы, что при определенных соотношениях задержек этих элементов может приводить к появлению нестабильности выходного кода АЦП, называемой «искрящим кодом». Одним из способов борьбы с этим явлением является построение декодирующего устройства с применением кода Грея, при котором в каждый момент может изменяться состояние только одного разряда.

2.5. Функция пикового детектирования

Для того чтобы записать большой фрагмент сигнала в имеющуюся в устройстве память ограниченного объема, частоту выборок приходится уменьшать по сравнению с максимально возможной. При этом короткие выбросы сигнала могут быть пропущены. Для предотвращения этого явления можно использовать следующий прием. Частота дискретизации всегда максимальна. На запоминание поступает результат каждой N-й выборки, где N - коэффициент деления частоты дискретизации. Для выделения максимального положительного напряжения в промежутке между записями значение текущей выборки постоянно сравнивается с предыдущим, и сохраняется большее из них. Аналогично выделяется максимальное отрицательное напряжение. Такие «интеллектуальные» устройства, использующие описанный рекурсивный алгоритм, встроены в некоторые новые цифровые осциллографы. Например, осциллограф Hewlett-Packard HP54800 может запоминать импульсы длительностью до 500 пс, что соответствует частоте дискретизации 2 ГГц.

Рис. 1. Структурная схема "классического" АЦП прямого взвешивания

Рис. 2. Интерполирующая структура АЦП прямого взвешивания

При описанном алгоритме минимальная длительность выделяемого импульса ограничивается временем полного цикла преобразования АЦП, значительная часть которого уходит на преобразование выходного кода линейки компараторов в выходной сигнал с помощью многокаскадной логической схемы. Изменением логической схемы АЦП задержка последней может быть сведена к задержке одного триггера-защелки. Структура такого цифрового пикового детектора TDC1035 компании Raytheon представлена на рис. 3 . Она отличается от «классической» (рис. 1) тем, что вместо стробируемых D-триггеров здесь использованы RS-триггеры, срабатывающие немедленно после прихода соответствующего сигнала компаратора и остающиеся в таком состоянии до прихода импульса сброса. «Термометрический» выходной код линейки RS-триггеров представляет код пикового значения сигнала. Время его преобразования в стандартную форму уже не имеет строгих ограничений. Этот АЦП выполнен по довольно старой технологии и имеет гарантированную длительность импульса, измеряемого с полной 8-разрядной точностью, составляет 30 нс.

Рис. 3. Структурная схема пикового детектора с АЦП прямого взвешивания Raytheon TDC1035

3. АЦП конвейерного типа (Pipeline)

Как упоминалось выше, максимальная разрядность АЦП прямого взвешивания - 10. Для повышения разрешения необходимо применять иные структуры. Многие из современных быстродействующих АЦП состоят из узлов, последовательно обрабатывающих сигнал за несколько тактов сигнала выборки. При этом частота появления выходных кодов равна частоте сигнала выборки. Они называются АЦП конвейерного типа (Pipeline).

3.1. Конвейерный груботочный АЦП (Subranging)

При этом, сейчас наиболее распространенном методе сначала в цифровую форму преобразуется группа старших разрядов (грубое преобразование). С помощью ЦАП полученный код преобразуется в аналоговый сигнал, который вычитается из входного. Разностное напряжение усиливается и поступает на АЦП, осуществляющий преобразование группы младших разрядов (точное преобразование). Количество таких уточняющих преобразований, а следовательно каскадов, может быть довольно большим. АЦП младших и старших разрядов работают одновременно, последовательно обрабатывая поступающие выборки. В устройстве могут использоваться внутренние АЦП, построенные на разных принципах- прямого взвешивания или, например, рассматриваемые далее MagAmps.

На рис. 4 представлена структура усовершенствованного 12-разрядного Subranging АЦП AD9042 компании Analog Devices, который выпускается в модификациях с частотами выборки 60 и 41 МГц. Первая схема выборки-хранения SHA1 обычным образом запоминает выборку сигнала на время преобразования. Ее выходной сигнал преобразуется АЦП, выходной код которого запоминается буферным регистром, а также используется для управления ЦАП. Схема выборки-хранения SHA2 используется для предотвращения влияния работы первого АЦП на точность последующей части устройства. Из ее выходного сигнала вычитается сигнал ЦАП. Разностное напряжение усиливается и запоминается схемой выборки-хранения SHA3 на время, необходимое для работы второго АЦП. При корректной работе первого АЦП его ошибка не превысит единицы младшего разряда. Число разрядов второго преобразователя выбирается таким образом, что число разрядов первого и второго АЦП на один превышало разрядность АЦП в целом. Избыточный разряд используется для коррекции ошибки преобразования первого АЦП. Для этого ЦАП должен иметь точность не менее чем у АЦП в целом, то есть в данном случае 12-разрядную, а суммирующий усилитель такой коэффициент усиления, чтобы вес старшего разряда второго АЦП был не меньше младшего разряда первого. При этом схема корректирующей логики, представляющего собой полный сумматор, сможет уменьшить погрешность преобразования до величины, соответствующей заданному числу разрядов АЦП. Особенностью являются использование АЦП хорошо освоенного компанией типа MagAmps и для получения высокой линейности и быстродействия, ЦАП с 63 источниками тока, весовой коэффициент каждого из которых соответствует определенному коду. Технические идеи, заложенные в этой структуре, используются в ряде других изделий компании Analog Devices.

Рис. 4. Структурная схема конвейерного АЦП с корректирующей логикой Analog Devices AD9042

Аналогичную структуру имеет АЦП ADS807, используемая компанией Burr-Brown во всех сериях высокоскоростных АЦП : 12-разрядных ADS80X (самый быстрый ADS807 - 53 МГц), 10-разрядных ADS82X и ADS90X (самый быстрый ADS824 - 70 МГц), 8-разрядных ADS83X и ADS93X (самый быстрый ADS831 - 80 МГц).

Все высокоскоростные АЦП компании Texas Instruments также построены на основе этого метода. Поскольку они используют внутренние АЦП прямого взвешивания (Flash), компания называет их структуру Samiflash. За исключением TLC876, все они 8-разрядные и используют два внутренних четырехразрядных АЦП. Самый быстрый из них -TLV5580 (8 разрядов, 80 МГц, время задержки появления выходного кода - 4,5 такта), самый точный- TLC876 (10 разрядов, 20 МГц, использует 5 внутренних двухразрядных АЦП).

3.2. Многокаскадный с однобитными АЦП

Один из ранних вариантов конвейерного АЦП (ripple) состоял из последовательно включенных одинаковых каскадов. Каждый каскад содержал усилитель, однобитный ЦАП и компаратор [Х]. Входной сигнал запоминался схемой выборки-хранения, поступал на первый компаратор, при его срабатывании однобитовый сигнал ЦАП вычитался из входного сигнала, усиливался в 2 раза усилителем (для получения одинаковой чувствительности во всех каскадах) и в виде разностного сигнала поступал на следующий каскад. Таким образом, каждый из каскадов осуществлял одноразрядное аналого-цифровое преобразование. Совокупность сигналов с выходов всех компараторов представляла результат преобразования, который выходной логикой перекодировался в стандартную форму. Время преобразования определялось в основном временем прохождения сигнала через все каскады.

Рис. 5. Структурная схема однобитного АЦП MagAmp - элемента конвейерного АЦП

Усовершенствована конвейерная структура, построенная из одноразрядных АЦП, названа Magnitude Amplifiers, или сокращенно MagAmps, так как использует усилители абсолютного значения сигнала. Применяют и другие названия. Эквивалентная схема каскада такого АЦП представлена на рис. 5. Компаратор определяет знак входного напряжения, в соответствии с которым выдает выходной бит. Одновременно он управляет знаком усиления, с которым сигнал поступает на следующий каскад: +2 или –2. Опорное напряжение VR суммируется с напряжением на выходе ключа, образуя разностный сигнал, поступающий на следующий каскад. В отличие от описанного выше варианта (ripple), эта зависимость имеет скачки только по производной, но не имеет резких скачков по амплитуде, что способствует достижению высокой скорости преобразования. Основным фактором, позволяющим достигать высокой скорости преобразования, явилась возможность реализации в новых структурах аналоговых ИС с токовым управлением высокоскоростных дифференциальных каскадов с малыми искажениями и точностью, достигающей 8 разрядов без применения обратной связи. За форму зависимости этот АЦП также называют складным (folded), а за выходную кодировку в виде кода Грея также последовательным АЦП Грея. Благодаря технологичности эти структуры часто используются при построении недорогих АЦП с хорошими характеристиками. Например, Analog Devices в ее 12-разрядных АЦП AD9042, в серии AD922X с частотой квантования до 10 МГц, в сдвоенном 8-разрядном AD9059 с частотой квантования 60 МГц (5 старших разрядов) и в 8-разрядном AD9054 с частотой квантования 200 МГц (4 старших разряда).

4. О применении многофазной дискретизации

При нестабильности следования сигналов выборки, что обычно проявляется в форме их дрожания (jitter) по фазе, на сигналах с частотой, соизмеримой с частотой выборок, наблюдается появление характерных нелинейных искажений, тем больших, чем выше скорость изменения сигнала. Для повышения временной стабильности тактовых генераторов принимаются специальные меры, например, в новых осциллографах Hewlett-Packard используется схема формирования с петлей фазовой автоподстройки, обеспечивающая очень стабильный сигнал синхронизации .

Часто в высокоскоростных АЦП, построенных на различных принципах, для повышения эквивалентной частоты выборок устройства в целом, используется включение нескольких АЦП параллельно по входам и выборками с временным сдвигом относительно друг друга. Этот метод, называемый многофазной дискретизацией, дает серьезные преимущества в скорости преобразования, если время записи (выборки) сигнала в одну физическую ячейку запоминания существенно меньше времени от поступления сигнала выборки до появления сигнала на выходе АЦП. Например, в упоминавшемся выше AD9059, время выборки встроенной схемы выборки-хранения составляет 1 нс, а минимальный интервал между сигналами выборки - 16,7 нс. Однако этой возможностью нужно пользоваться осторожно. Ограничения, вызываемые недостаточной стабильностью следования сигналов выборки и различием времени преобразования для входящих в устройство АЦП, приводят к тому, что сейчас чаще всего либо используется чередование только двух АЦП, выполненных на одном кристалле, как AD9058 либо, от этой возможности отказываются вовсе, как в новых осциллографах компании Hewlett-Packard.

Литература

  1. Каталог фирмы Tektronix, 1988г.
  2. Денбновецкий С.В. и др., Запоминающие электронно-лучевые осциллографы. Москва, «Радио и связь»,1990.
  3. 20X Clock multiplication moves digitizing rate of portable Scopes in to Hiperdrive. Richard B. Rudloff, Hewlett-Packard Corp.
  4. Цифровой регистратор импульсных сигналов АФИ-1700. Техническое описание и инструкция по эксплуатации. Институт ядерной физики Сибирского отделения АН СССР, 1994 г.
  5. 500Mpsps 8-Bit Flash ADC, Analog Design Guide, 7th Edition, Maxim Integrated Products, Inc.
  6. Walt Kester. High speed sampling and high speed ADC. High speed design techniques, Analog Devices Inc.
  7. Winter 1999 Designer"s Reference Manual, CD, Analog Devices Inc.
  8. 1997 Data Book, CD, Raytheon Electronics Semiconductor Division.
  9. 1999 CD-ROM Catalog, Burr-Brown Corporation.
  10. Designer"s Guide & Data Book.

Аналого-цифровые преобразователи (АЦП) являются устройствами, которые принимают входные аналоговые сигналы и генерируют соответствующие им цифровые сигналы, пригодные для обработки микропроцессорами и другими цифровыми устройствами.

Принципиально не исключена возможность непосредственного преобразования различных физических величин в цифровую форму, однако эту задачу удается решить лишь в редких случаях из-за сложности таких преобразователей. Поэтому в настоящее время наиболее рациональным признается способ преобразования различных по физической природе величин сначала в функционально связанные с ними электрические, а затем уже с помощью преобразователей напряжение-код - в цифровые. Именно эти преобразователи имеют обычно в виду, когда говорят об АЦП.

Процедура аналого-цифрового преобразования непрерывных сигналов, которую реализуют с помощью АЦП, представляет собой преобразование непрерывной функции времени U(t), описывающей исходный сигнал, в последовательность чисел {U"(t j)}, j=0,1,2,:, отнесенных к некоторым фиксированным моментам времени. Эту процедуру можно разделить на две самостоятельные операции. Первая из них называется дискретизацией и состоит в преобразовании непрерывной функции времени U(t) в непрерывную последовательность {U(t j)}. Вторая называется квантованием и состоит в преобразовании непрерывной последовательности в дискретную {U"(t j)}.

В основе дискретизации непрерывных сигналов лежит принципиальная возможность представления их в виде взвешенных сумм

где a j - некоторые коэффициенты или отсчеты, характеризующие исходный сигнал в дискретные моменты времени; f j (t) - набор элементарных функций, используемых при восстановлении сигнала по его отсчетам.

Наиболее распространенной формой дискретизации является равномерная, в основе которой лежит теорема отсчетов. Согласно этой теореме в качестве коэффициентов a j следует использовать мгновенные значения сигнала U(t j) в дискретные моменты времени t j =jDt, а период дискретизации выбирать из условия

где F m - максимальная частота спектра преобразуемого сигнала. При этом выражение (1) переходит в известное выражение теоремы отсчетов

, (3)

Для сигналов со строго ограниченным спектром это выражение является тождеством. Однако спектры реальных сигналов стремятся к нулю лишь асимптотически. Применение равномерной дискретизации к таким сигналам приводит к возникновению в системах обработки информации специфических высокочастотных искажений, обусловленных выборкой. Для уменьшения этих искажений необходимо либо увеличивать частоту дискретизации, либо использовать перед АЦП дополнительный фильтр нижних частот, ограничивающий спектр исходного сигнала перед его аналого-цифровым преобразованием.

В общем случае выбор частоты дискретизации будет зависеть также от используемого в (1) вида функции f j (t) и допустимого уровня погрешностей, возникающих при восстановлении исходного сигнала по его отсчетам. Все это следует принимать во внимание при выборе частоты дискретизации, которая определяет требуемое быстродействие АЦП. Часто этот параметр задают разработчику АЦП.

Рассмотрим более подробно место АЦП при выполнении операции дискретизации.

Для достаточно узкополосных сигналов операцию дискретизации можно выполнять с помощью самих АЦП и совмещать таким образом с операцией квантования. Основной закономерностью такой дискретизации является то, что за счет конечного времени одного преобразования и неопределенности момента его окончания, зависящего в общем случае от параметров входного сигнала, не удается получить однозначного соответствия между значениями отсчетов и моментами времени, к которым их следует отнести. В результате при работе с изменяющимися во времени сигналами возникают специфические погрешности, динамические по своей природе, для оценки которых вводят понятие апертурной неопределенности, характеризующейся обычно апертурным временем.

Апертурным временем t a называют время, в течение которого сохраняется неопределенность между значением выборки и временем, к которому она относится. Эффект апертурной неопределенности проявляется либо как погрешность мгновенного значения сигнала при заданных моментах измерения, либо как погрешность момента времени, в который производится измерение при заданном мгновенном значении сигнала. При равномерной дискретизации следствием апертурной неопределенности является возникновение амплитудных погрешностей, которые называются апертурными и численно равны приращению сигнала в течение апертурного времени.

Если использовать другую интерпретацию эффекта апертурной неопределенности, то ее наличие приводит к "дрожанию" истинных моментов времени, в которые берутся отсчеты сигнала, по отношению к равноотстоящим на оси времени моментам. В результате вместо равномерной дискретизации со строго постоянным периодом осуществляется дискретизация с флюктуирующим периодом повторения, что приводит к нарушению условий теоремы отсчетов и появлению уже рассмотренных апертурных погрешностей в системах цифровой обработки информации.

Такое значение апертурной погрешности можно определить, разложив выражение для исходного сигнала в ряд Тейлора в окрестностях точек отсчета, которое для j-й точки имеет вид

и дает в первом приближении апертурную погрешность

, (4)

где t a - апертурное время, которое для рассматриваемого случая является в первом приближении временем преобразования АЦП.

Обычно для оценки апертурных погрешностей используют синусоидальный испытательный сигнал U(t)=U m sinwt, для которого максимальное относительное значение апертурной погрешности

DU a /U m =wt a .

Если принять, что для N-разрядного АЦП с разрешением 2 -N апертурная погрешность не должна превышать шага квантования (рис. 1), то между частотой сигнала w, апертурным временем t a и относительной апертурной погрешностью имеет место соотношение

Для обеспечения дискретизации синусоидального сигнала частотой 100 кГц с погрешностью 1% время преобразования АЦП должно быть равно 25 нс. В то же время с помощью такого быстродействующего АЦП принципиально можно дискретизировать сигналы, имеющие ширину спектра порядка 20 МГц. Таким образом, дискретизация с помощью самого АЦП приводит к существенному расхождению требований между быстродействием АЦП и периодом дискретизации. Это расхождение достигает 2...3 порядков и сильно усложняет и удорожает процесс дискретизации, так как даже для сравнительно узкополосных сигналов требует весьма быстродействующих АЦП. Для достаточно широкого класса быстро изменяющихся сигналов эту проблему решают с помощью устройств выборки-хранения, имеющих малое апертурное время.

В настоящее время известно большое число методов преобразования напряжение-код. Эти методы существенно отличаются друг от друга потенциальной точностью, скоростью преобразования и сложностью аппаратной реализации. На рис. 2 представлена классификация АЦП по методам преобразования.

В основу классификации АЦП положен признак, указывающий на то, как во времени разворачивается процесс преобразования аналоговой величины в цифровую. В основе преобразования выборочных значений сигнала в цифровые эквиваленты лежат операции квантования и кодирования. Они могут осуществляться с помощью либо последовательной, либо параллельной, либо последовательно-параллельной процедур приближения цифрового эквивалента к преобразуемой величине.

Параметры АЦП

    Статические параметры

    Динамические параметры

    Шумы АЦП

При последовательном возрастании значений входного аналогового сигнала U вх (t) от 0 до величины, соответствующей полной шкале АЦП U пш выходной цифровой сигнал D(t) образует ступенчатую кусочно-постоянную линию. Такую зависимость по аналогии с ЦАП называют обычно характеристикой преобразования АЦП. В отсутствие аппаратных погрешностей средние точки ступенек расположены на идеальной прямой 1 (рис. 24), которой соответствует идеальная характеристика преобразования. Реальная характеристика преобразования может существенно отличаться от идеальной размерами и формой ступенек, а также расположением на плоскости координат. Для количественного описания этих различий существует целый ряд параметров.

Статические параметры

Разрешающая способность - величина, обратная максимальному числу кодовых комбинаций на выходе АЦП. Разрешающая способность выражается в процентах, разрядах или децибелах и характеризует потенциальные возможности АЦП с точки зрения достижимой точности. Например, 12-разрядный АЦП имеет разрешающую способность 1/4096, или 0,0245% от полной шкалы, или -72,2 дБ.

Разрешающей способности соответствует приращение входного напряжения АЦП U вх при изменении D j на единицу младшего разряда (ЕМР). Это приращение является шагом квантования. Для двоичных кодов преобразования номинальное значение шага квантования h=U пш /(2 N -1), где U пш - номинальное максимальное входное напряжение АЦП (напряжение полной шкалы), соответствующее максимальному значению выходного кода, N - разрядность АЦП. Чем больше разрядность преобразователя, тем выше его разрешающая способность.

.

Эта погрешность является мультипликативной составляющей полной погрешности. Иногда указывается соответствующим числом ЕМР.

Погрешность смещения нуля - значение U вх, когда входной код ЦАП равен нулю. Является аддитивной составляющей полной погрешности. Обычно определяется по формуле

,

где U вх.01 - значение входного напряжения, при котором происходит переход выходного кода изО в1 . Часто указывается в милливольтах или в процентах от полной шкалы:

.

Погрешности полной шкалы и смещения нуля АЦП могут быть уменьшены либо подстройкой аналоговой части схемы, либо коррекцией вычислительного алгоритма цифровой части устройства.

Погрешности линейности характеристики преобразования не могут быть устранены такими простыми средствами, поэтому они являются важнейшими метрологическими характеристиками АЦП.

Нелинейность - максимальное отклонение реальной характеристики преобразования D(U вх) от оптимальной (линия 2 на рис. 24). Оптимальная характеристика находится эмпирически так, чтобы минимизировать значение погрешности нелинейности. Нелинейность обычно определяется в относительных единицах, но в справочных данных приводится также и в ЕМР. Для характеристики, приведенной на рис. 25

.

Дифференциальной нелинейностью АЦП в данной точке k характеристики преобразования называется разность между значением кванта преобразования h k и средним значением кванта преобразования h. В спецификациях на конкретные АЦП значения дифференциальной нелинейности выражаются в долях ЕМР или процентах от полной шкалы. Для характеристики, приведенной на рис. 25,

.

Погрешность дифференциальной линейности определяет два важных свойства АЦП: непропадание кодов и монотонность характеристики преобразования. Непропадание кодов - свойство АЦП выдавать все возможные выходные коды при изменении входного напряжения от начальной до конечной точки диапазона преобразования. Пример пропадания кода i+1 приведен на рис. 25. При нормировании непропадания кодов указывается эквивалентная разрядность АЦП - максимальное количество разрядов АЦП, для которых не пропадают соответствующие им кодовые комбинации.

Монотонность характеристики преобразования - это неизменность знака приращения выходного кода D при монотонном изменении входного преобразуемого сигнала. Монотонность не гарантирует малых значений дифференциальной нелинейности и непропадания кодов.

Температурная нестабильность АЦ-преобразователя характеризуется температурными коэффициентами погрешности полной шкалы и погрешности смещения нуля.

Динамические параметры

Возникновение динамических погрешностей связано с дискретизацией сигналов, изменяющихся во времени. Можно выделить следующие параметры АЦП, определяющие его динамическую точность.

Максимальная частота дискретизации (преобразования) - это наибольшая частота, с которой происходит образование выборочных значений сигнала, при которой выбранный параметр АЦП не выходит за заданные пределы. Измеряется числом выборок в секунду. Выбранным параметром может быть, например, монотонность характеристики преобразования или погрешность линейности.

Время преобразования (t пр) - это время, отсчитываемое от начала импульса дискретизации или начала преобразования до появления на выходе устойчивого кода, соответствующего данной выборке. Для одних АЦП, например, последовательного счета или многотактного интегрирования, эта величина является переменной, зависящей от значения входного сигнала, для других, таких как параллельные или последовательно-параллельные АЦП, а также АЦП последовательного приближения, примерно постоянной. При работе АЦП без УВХ время преобразования является апертурным временем.

Время выборки (стробирования) - время, в течение которого происходит образование одного выборочного значения. При работе без УВХ равно времени преобразования АЦП.

Шумы АЦП

В идеале, повторяющиеся преобразования фиксированного постоянного входного сигнала должны давать один и тот же выходной код. Однако, вследствие неизбежного шума в схемах АЦП, существует некоторый диапазон выходных кодов для заданного входного напряжения. Если подать на вход АЦП постоянный сигнал и записать большое число преобразований, то в результате получится некоторое распределение кодов. Если подогнать Гауссовское распределение к полученной гистограмме, то стандартное отклонение будет примерно эквивалентно среднеквадратическому значению входного шума АЦП. В качестве примера на рис. 26 приведена гистограмма результатов 5000 преобразований постоянного входного сигнала, выполненных 16-разрядным двухтактным последовательно-параллельным АЦП АD7884.

Входное напряжение из диапазона + 5 В было установлено по возможности ближе к центру кода. Как видно из гистограммы, все результаты преобразований распределены на шесть кодов. Среднеквадратическое значение шума, соответствующее этой гистограмме, равно 120 мкВ.

Интерфейсы АЦП

Важную часть аналого-цифрового преобразователя составляет цифровой интерфейс, т.е. схемы, обеспечивающие связь АЦП с приемниками цифровых сигналов. Структура цифрового интерфейса определяет способ подключения АЦП к приемнику выходного кода, например, микропроцессору, микроконтроллеру или цифровому процессору сигналов. Свойства цифрового интерфейса непосредственно влияют на уровень верхней границы частоты преобразования АЦП.

Наиболее часто применяют способ связи АЦП с процессором, при котором АЦП является для процессора как бы одной из ячеек памяти. При этом АЦП имеет необходимое число адресных входов, дешифратор адреса и подключается непосредственно к адресной шине и шине данных процессора. Для этого он обязательно должен иметь выходные каскады с тремя состояниями.

Другое требование совместной работы АЦП с микропроцессорами, называемое программным сопряжением, является общим для любых систем, в которые входят ЭВМ и АЦП. Имеется несколько способов программного сопряжения АЦП с процессорами. Рассмотрим основные.

Проверка сигнала преобразования . Этот способ состоит в том, что команда начала преобразования "Пуск" периодически подается на АЦП от таймера. Процессор находится в цикле ожидания от АЦП сигнала окончания преобразования "Готов", после которого выходит из цикла, считывает данные с АЦП и в соответствии с ними приступает либо к следующему преобразованию, либо к выполнению основной программы, а затем вновь входит в цикл ожидания. Здесь АЦП выступает в роли ведущего устройства (master), а процессор - ведомого (slave). Этот способ почти не требует дополнительной аппаратуры, но пригоден только в системах, где процессор не слишком загружен, т.е. длительность обработки данных от АЦП меньше времени преобразования АЦП. Указанный способ позволяет максимально использовать производительность АЦП.

Если длительность обработки данных от АЦП составляет заметно больше времени преобразования АЦП, можно использовать вариант этого способа, отличающийся тем, что сигнал "Пуск" поступает от процессора. Процессор выполняет основную программу обработки данных, а затем считывает данные с АЦП и вновь запускает его. В этом случае процессор выступает в роли ведущего устройства, а АЦП - ведомого.

Простое прерывание . Выдав команду "Пуск", процессор продолжает работу по основной программе. После окончания преобразования формируется сигнал прерывания, который прерывает в процессоре вычисления и включает процедуру поиска периферийного прибора, пославшего сигнал прерывания. Эта процедура состоит в переборе всех периферийных устройств до тех пор, пока не будет найден нужный. Преимущество этого способа по сравнению с предыдущим проявляется в большем числе преобразований за одно и то же время, если используемый АЦП работает медленно. Если же АЦП быстродействующий, то этот способ работы может оказаться даже медленнее предыдущего, так как на обработку прерывания требуется значительное время.

Векторное прерывание . Этот способ отличается от предыдущего тем, что вместе с сигналом прерывания посылается и адрес программы обращения к данному АЦП. Следовательно, не нужно перебирать все периферийные приборы.

Прямой доступ к памяти . Здесь также используется прерывание, но в отличие от предыдущих двух способов, управление по системе прерывания передается на специальный интерфейс, который и производит перезапись данных преобразования в память, минуя регистры процессора. Это позволяет сократить длительность прерывания до одного такта. Номера ячеек памяти хранятся адресном регистре интерфейса. Для этой цели выпускаются ИМС контроллеров прямого доступа к памяти.

В зависимости от способа пересылки выходного слова из АЦП в цифровой приемник различают преобразователи с последовательным и параллельным интерфейсами выходных данных. Последовательный интерфейс медленнее параллельного, однако он позволяет осуществить связь с цифровым приемником значительно меньшим количеством линий и в несколько раз сократить число выводов ИМС. Поэтому обычно параллельный интерфейс используется в параллельных и последовательно-параллельных АЦП, а последовательный - в интегрирующих. В АЦП последовательного приближения применяются как параллельный (например, 1108ПВ2), так и последовательный (например, АD7893) интерфейсы. Некоторые АЦП последовательного приближения (например, AD7892) имеют интерфейс обоих типов.

АЦП с параллельным интерфейсом выходных данных. В простейших случаях, характерных для параллельных АЦП и преобразователей ранних моделей, интерфейс осуществляется с помощью N-разрядного регистра хранения, имеющего три состояния выхода. Здесь N - разрядность АЦП. На рис. 20 представлена функциональная схема такого АЦП и временные диаграммы работы интерфейса.

На нарастающем фронте сигнала "Пуск" УВХ преобразователя переходит в режим хранения и инициируется процесс преобразования. Когда преобразование завершено, на выходную линию "Готов" выводится импульс, что указывает на то, что в выходном регистре АЦП находится новый результат. Сигналы "CS" (выбор кристалла) и "RD" (Чтение) управляют выводом данных для передачи приемнику.

Для того, чтобы упростить связь многоразрядного (N>8) АЦП с 8-разрядным микропроцессором или микроконтроллером в некоторых ИМС (например, МАХ167) реализована побайтовая выдача выходного слова. Если сигнал HВEN , управляющий режимом вывода, имеет низкий уровень, то старшие биты выходного слова поступают на соответствующие им выводы (для 12-разрядного АЦП на выводы DO8...DO11). В противном случае они подаются на выводы, соответствующие младшему байту (для 12-разрядного АЦП на выводы DO0...DO3).

АЦП с последовательным интерфейсом выходных данных. В АЦП последовательного приближения, оснащенных простейшей цифровой частью, таких как 12-битный МАХ176 или 14-битный МАХ121 выходная величина может быть считана в виде последовательного кода прямо с компаратора или регистра последовательного приближения (РПП), как это указано в п. 4.1. На рис. 21 представлена функциональная схема такого интерфейса (а) и временные диаграммы его работы (б).

Здесь приведена схема, реализующая SPI-интерфейс. Процессор является ведущим (master). Он инициирует начало процесса преобразования подачей среза на вход "Пуск" АЦП. С тактового выхода процессора на синхровход АЦП поступает последовательность тактовых импульсов. Начиная со второго такта после пуска на выходе данных АЦП формируется последовательный код выходного слова старшими битами вперед. Этот сигнал поступает на MISO (master - input, slave - output) вход процессора.

Простейший интерфейс обеспечивает наименьшее время цикла "преобразование - передача данных". Однако он обладает двумя существенными недостатками. Во-первых, переключение выходных каскадов АЦП во время преобразования привносит импульсную помеху в аналоговую часть преобразователя, что вызывает уменьшение соотношение сигнал/шум (например, для АЦП AD7893 среднеквадратическое значение шума при передаче данных во время преобразования почти в три раза больше, чем при считывании данных после преобразования). Во-вторых, если АЦП имеет большое время преобразования, то процессор будет занят приемом информации от него существенную часть вычислительного цикла. По этим причинам современные модели АЦП с последовательной передачей выходных данных оснащаются выходным сдвиговым регистром, в который загружается результат преобразования из РПП. Временные диаграммы такого интерфейса приведены на рис. 22.

По заднему фронту сигнала "Пуск" УВХ переходит в режим хранения и начинается преобразование. При этом на соответствующем выводе АЦП выставляется сигнал "Занят". По окончании преобразования начинается передача данных. Процессор подает на синхровход АЦП последовательность синхроимпульсов CLK. Если 8

Увеличение длительности цикла "преобразование - передача данных" по сравнению с простейшим интерфейсом обычно несущественно, так как синхроимпульсы могут иметь большую частоту. Например, для 12-разрядного АЦП последовательного приближения AD7896 минимальный интервал между отсчетами составляет 10 мкс. Из них последовательное чтение данных занимает только 1,6 мкс при частоте синхросигнала 10 МГц.

Последовательный интерфейс сигма-дельта АЦП с процессорами аппаратно реализуется очень просто. Например, для связи 24-разрядного трехканального АЦП AD7714 с микроконтроллером 80С51 в простейшем случае требуется всего две линии (рис. 23).

АЦП управляется при помощи нескольких внутренних регистров. Это: регистр обмена, регистр режима, два регистра фильтра, три регистра калибровки нуля шкалы, три регистра калибровки полной шкалы и регистр данных. Данные в эти регистры записываются через последовательный интерфейс; этот же интерфейс позволяет также считывать данные из указанных регистров. Любое обращение к любому регистру должно начинаться с операции записи в регистр обмена. После включения питания или сброса АЦП ожидает записи в регистр обмена. Данные, записываемые в этот регистр, определяют тип следующей операции (чтение или запись), а также к какому регистру будет идти обращение. Программа взаимодействия микроконтроллера с АЦП включает следующую последовательность операций:

    Запись в регистр обмена: задается входной канал.

    Запись в верхний регистр фильтра: устанавливаются 4 старших бита слова фильтра, а также устанавливается биполярный/униполярный режим и длина выходного слова.

    Запись в нижний регистр фильтра: устанавливаются 8 младших битов слова фильтра.

    Запись в регистр режима: устанавливается коэффициент усиления, инициируется автокалибровка.

    Опрашивается сигнал, указывающий на наличие в регистре данных нового результата преобразования.

    Чтение результата из регистра данных.

    Циклический повтор действий 5 и 6, пока не будет считано заданное число отсчетов.

Системы сбора данных и микроконверторы

Постепенное усложнение АЦП, появление многоканальных АЦП, АЦП со встроенным устройством выборки-хранения, АЦП со сложной цифровой частью привело к тому, что сейчас имеются законченные однокристальные системы сбора данных, обеспечивающие преобразование в цифровой код сигналов, поступающих от многих датчиков и передачу их на микроЭВМ. Блок-схема развитой системы сбора данных приведена на рис. 19.

УПК - усилитель с программируемым коэффициентом усиления; УВХ - устройство выборки-хранения; ИОН - источник опорного напряжения; ШД - шина данных

Основу системы составляет АЦП, обычно АЦП последовательного приближения. Чтобы уменьшить число корпусов ИМС, необходимых для создания системы сбора данных, в схему встроены УВХ и источник опорного напряжения. Для подключения к нескольким источникам входных аналоговых сигналов используется аналоговый мультиплексор. Чтобы сократить частоту прерываний главного процессора некоторые системы сбора данных снабжаются оперативным запоминающим устройством обратного магазинного типа FIFO - first input - first output (первый вошел - первый вышел). Измерительный усилитель УПК, входящий в систему, меняет свой коэффициент усиления по команде от схемы управления. Это позволяет выровнять диапазоны аналоговых сигналов с различных входов.

Схема управления может включать оперативное запоминающее устройство (ОЗУ), в которое загружается от главного процессора блок рабочих команд. Эти команды содержат сведения о том, какие операционные режимы использовать, какие из входных каналов должны быть однопроводными, а какие - объединяться с образованием дифференциальных пар, насколько часто и в каком порядке следует производить выборку для каждого канала. Встроенный в систему сбора данных цифровой таймер определяет темп преобразования АЦП.

Характерным примером системы сбора данных является AD7581 (отечественный аналог - 572ПВ4), содержащая 8-входовый аналоговый мультиплексор, 8-разрядный АЦП последовательного приближения, и запоминающее устройство FIFO с организацией 8х8 бит. Другой пример - AD1В60, включающая 8-входовый аналоговый мультиплексор, измерительный усилитель с программируемым коэффициентом усиления от 1 до 128, 16-разрядный АЦП на основе интегрирующего ПНЧ, ИОН, микропроцессор, ОЗУ режима и ПЗУ конфигурации. Одной из наиболее развитых является система сбора данных LM12458, которая содержит 8-входовый аналоговый мультиплексор, УВХ, 13-разрядный АЦП последовательного приближения, память типа FIFO с организацией 32х16 бит, ОЗУ команд и 16-битный цифровой таймер.

Для повышения быстродействия установление коэффициента передачи и выборка данных может осуществляться по каждому каналу индивидуально. Так, например, 4-х канальная система сбора данных AD7865 содержит четыре цепи масштабирования входного сигнала и четыре устройства слежения/хранения, включенные до мультиплексора.

Особый класс устройств с аналого-цифровыми преобразователями представляют собой микроконверторы . Некоторое время назад были попытки создания аналоговых программируемых матриц, т.е. устройств, включающих операционные усилители и другие аналоговые ячейки, связи между которыми можно было установить программным путем. Эти попытки коммерческого успеха не имели. Недавно некоторые фирмы, например, Analog Devices, начали выпуск программируемых устройств для преобразования аналоговых сигналов, включающих многоканальный АЦП, микроконтроллер и одно- или двухканальный ЦАП. Такой микроконвертор принимает аналоговые сигналы, преобразует их в цифровые коды, по программе, записанной в ПЗУ микроконтроллера, обрабатывает эти коды и с помощью ЦАП вновь преобразует результаты в аналоговые сигналы. Уступая чисто аналоговой только в быстродействии, такая схема отличается большой функциональной гибкостью и точностью. В частности, микроконвертор ADuC812 содержит 8-канальный мультиплексор, УВХ, 12-разрядный АЦП последовательного приближения с производительностью 200 кПс, два 12-разрядных ЦАП и микроконтроллер с системой команд семейства MCS-51.

Параллельные АЦП

АЦП этого типа осуществляют квантование сигнала одновременно с помощью набора компараторов, включенных параллельно источнику входного сигнала. На рис. 3 показана реализация параллельного метода АЦ-преобразования для 3-разрядного числа.

С помощью трех двоичных разрядов можно представить восемь различных чисел, включая нуль. Необходимо, следовательно, семь компараторов. Семь соответствующих эквидистантных опорных напряжений образуются с помощью резистивного делителя.

Если приложенное входное напряжение не выходит за пределы диапазона от 5 / 2 h, до 7 / 2 h, где h=U оп /7 - квант входного напряжения, соответствующий единице младшего разряда АЦП, то компараторы с 1-го по 3-й устанавливаются в состояние1 , а компараторы с 4-го по 7-й - в состояние0 . Преобразование этой группы кодов в трехзначное двоичное число выполняет логическое устройство, называемое приоритетным шифратором, диаграмма состояний которого приведена в табл.1.

Таблица 1

Входное напряжение

Состояние компараторов

Подключение приоритетного шифратора непосредственно к выходу АЦП может привести к ошибочному результату при считывании выходного кода. Рассмотрим, например переход от трех к четырем, или в двоичном коде от 011 к 100. Если старший разряд вследствие меньшего времени задержки изменит свое состояние раньше других разрядов, то временно на выходе возникнет число 111, т.е. семь. Величина ошибки в этом случае составит половину измеряемого диапазона.

Так как результаты АЦ-преобразования записываются, как правило, в запоминающее устройство, существует вероятность получить полностью неверную величину. Решить эту проблему можно, например, с помощью устройства выборки-хранения (УВХ). Некоторые интегральные микросхемы (ИМС) параллельных АЦП, например МАХ100, снабжаются сверхскоростными УВХ, имеющими время выборки порядка 0,1 нс. Другой путь состоит в использовании кода Грея, характерной особенностью которого является изменение только одной кодовой позиции при переходе от одного кодового значения к другому. Наконец, в некоторых АЦП (например, МАХ1151) для снижения вероятности сбоев при параллельном АЦ-преобразовании используется двухтактный цикл, когда сначала состояния выходов компараторов фиксируются, а затем, после установления состояния приоритетного шифратора, подачей активного фронта на синхровход выходного регистра в него записывают выходное слово АЦП.

Как видно из табл. 1, при увеличении входного сигнала компараторы устанавливаются в состояние 1 по очереди - снизу вверх. Такая очередность не гарантируется при быстром нарастании входного сигнала, так как из-за различия во временах задержки компараторы могут переключаться в другом порядке. Приоритетное кодирование позволяет избежать ошибки, возможной в этом случае, благодаря тому, что единицы в младших разрядах не принимаются во внимание приоритетным шифратором.

Благодаря одновременной работе компараторов параллельный АЦП является самым быстрым. Например, восьмиразрядный преобразователь типа МАХ104 позволяет получить 1 млрд отсчетов в секунду при времени задержки прохождения сигнала не более 1,2 нс. Недостатком этой схемы является высокая сложность. Действительно, N-разрядный параллельный АЦП сдержит 2 N -1 компараторов и 2 N согласованных резисторов. Следствием этого является высокая стоимость (сотни долларов США) и значительная потребляемая мощность. Тот же МАХ104, например, потребляет около 4 Вт.

Последовательные АЦП

    АЦП последовательного счета

    АЦП последовательного приближения

АЦП последовательного счета

Этот преобразователь является типичным примером последовательных АЦП с единичными приближениями и состоит из компаратора, счетчика и ЦАП (рис. 8). На один вход компаратора поступает входной сигнал, а на другой - сигнал обратной связи с ЦАП.

Работа преобразователя начинается с прихода импульса запуска, который включает счетчик, суммирующий число импульсов, поступающих от генератора тактовых импульсов ГТИ. Выходной код счетчика подается на ЦАП, осуществляющий его преобразование в напряжение обратной связи U ос. Процесс преобразования продолжается до тех пор, пока напряжение обратной связи сравняется со входным напряжением и переключится компаратор, который своим выходным сигналом прекратит поступление тактовых импульсов на счетчик. Переход выхода компаратора из1 в0 означает завершение процесса преобразования. Выходной код, пропорциональный входному напряжению в момент окончания преобразования, считывается с выхода счетчика.

Время преобразования АЦП этого типа является переменным и определяется входным напряжением. Его максимальное значение соответствует максимальному входному напряжению и при разрядности двоичного счетчика N и частоте тактовых импульсов f такт равно

t пр.макс =(2 N -1)/ f такт. (5)

Например, при N=10 и f такт =1 МГц t пр.макс =1024 мкс, что обеспечивает максимальную частоту выборок порядка 1 кГц.

Статическая погрешность преобразования определяется суммарной статической погрешностью используемых ЦАП и компаратора. Частоту счетных импульсов необходимо выбирать с учетом завершения переходных процессов в них.

При работе без устройства выборки-хранения апертурное время совпадает с временем преобразования. Как следствие, результат преобразования черезвычайно сильно зависит от пульсаций входного напряжения. При наличии высокочастотных пульсаций среднее значение выходного кода нелинейно зависит от среднего значения входного напряжения. Это означает, что АЦП данного типа без устройства выборки-хранения пригодны для работы с постоянными или медленно изменяющимися напряжениями, которые за время преобразования изменяются не более, чем на значение кванта преобразования.

Таким образом, особенностью АЦП последовательного счета является небольшая частота дискретизации, достигающая нескольких килогерц. Достоинством АЦП данного класса является сравнительная простота построения, определяемая последовательным характером выполнения процесса преобразования.

АЦП последовательного приближения

Преобразователь этого типа, называемый в литературе также АЦП с поразрядным уравновешиванием, является наиболее распространенным вариантом последовательных АЦП.

В основе работы этого класса преобразователей лежит принцип дихотомии, т.е последовательного сравнения измеряемой величины с 1 / 2 , 1 / 4 , 1 / 8 и т.д. от возможного максимального значения ее. Это позволяет для N-разрядного АЦП последовательного приближения выполнить весь процесс преобразования за N последовательных шагов (итераций) вместо 2 N -1 при использовании последовательного счета и получить существенный выигрыш в быстродействии. Так, уже при N=10 этот выигрыш достигает 100 раз и позволяет получить с помощью таких АЦП до 10 5 ...10 6 преобразований в секунду. В то же время статическая погрешность этого типа преобразователей, определяемая в основном используемым в нем ЦАП, может быть очень малой, что позволяет реализовать разрешающую способность до 18 двоичных разрядов при частоте выборок до 200 кГц (например, DSP101 фирмы Burr-Brown).

Рассмотрим принципы построения и работы АЦП последовательного приближения на примере классической структуры (рис. 9а ) 4-разрядного преобразователя, состоящего из трех основных узлов: компаратора, регистра последовательного приближения (РПП) и ЦАП.

После подачи команды "Пуск" с приходом первого тактового импульса РПП принудительно задает на вход ЦАП код, равный половине его шкалы (для 4-разрядного ЦАП это 1000 2 =8 10). Благодаря этому напряжение U ос на выходе ЦАП (рис. 9б )

где h - квант выходного напряжения ЦАП, соответствующий единице младшего разряда (ЕМР). Эта величина составляет половину возможного диапазона преобразуемых сигналов. Если входное напряжение больше, чем эта величина, то на выходе компаратора устанавливается 1 , если меньше, то0 . В этом последнем случае схема управления должна переключить старший разряд d 3 обратно в состояние нуля. Непосредственно вслед за этим остаток

U вх - d 3 2 3 h

таким же образом сравнивается с ближайшим младшим разрядом и т.д. После четырех подобных выравнивающих шагов в регистре последовательного приближения оказывается двоичное число, из которого после цифро-аналогового преобразования получается напряжение, соответствующее U вх с точностью до 1 ЕМР. Выходное число может быть считано с РПП в виде параллельного двоичного кода по N линиям. Кроме того, в процессе преобразования на выходе компаратора, как это видно из рис. 9б , формируется выходное число в виде последовательного кода старшими разрядами вперед.

Быстродействие АЦП данного типа определяется суммой времени установления t уст ЦАП до установившегося значения с погрешностью, не превышающей 0,5 ЕМР, времени переключения компаратора t к и задержки распространения сигнала в регистре последовательного приближения t з. Сумма t к + t з является величиной постоянной, а t уст уменьшается с уменьшением веса разряда. Следовательно для определения младших разрядов может быть использована более высокая тактовая частота. При поразрядной вариации f такт возможно уменьшение времени преобразования t пр на 40%. Для этого в состав АЦП может быть включен контроллер.

При работе без устройства выборки-хранения апертурное время равно времени между началом и фактическим окончанием преобразования, которое так же, как и у АЦП последовательного счета, по сути зависит от входного сигнала, т.е. является переменным. Возникающие при этом апертурные погрешности носят также нелинейный характер. Поэтому для эффективного использования АЦП последовательного приближения, между его входом и источником преобразуемого сигнала следует включать УВХ. Большинство выпускаемых в настоящее время ИМС АЦП последовательного приближения (например, 12-разрядный МАХ191, 16-разрядный AD7882 и др.), имеет встроенные устройства выборки-хранения или, чаще, устройства слежения-хранения (track-hold), управляемые сигналом запуска АЦП. Устройство слежения-хранения отличается тем, что постоянно находится в режиме выборки, переходя в режим хранения только на время преобразования сигнала.

Данный класс АЦП занимает промежуточное положение по быстродействию, стоимости и разрешающей способности между последовательно-параллельными и интегрирующими АЦП и находит широкое применение в системах управления, контроля и цифровой обработки сигналов.

Интегрирующие АЦП

    АЦП многотактного интегрирования

    Сигма-дельта АЦП

    Преобразователи напряжение-частота

Недостатком рассмотренных выше последовательных АЦП является низкая помехоустойчивость результатов преобразования. Действительно, выборка мгновенного значения входного напряжения, обычно включает слагаемое в виде мгновенного значения помехи. Впоследствии при цифровой обработке последовательности выборок эта составляющая может быть подавлена, однако на это требуется время и вычислительные ресурсы. В АЦП, рассмотренных ниже, входной сигнал интегрируется либо непрерывно, либо на определенном временнoм интервале, длительность которого обычно выбирается кратной периоду помехи. Это позволяет во многих случаях подавить помеху еще на этапе преобразования. Платой за это является пониженное быстродействие интегрирующих АЦП.

АЦП многотактного интегрирования

Упрощенная схема АЦП, работающего в два основных такта (АЦП двухтактного интегрирования), приведена на рис. 10.

Преобразование проходит две стадии: стадию интегрирования и стадию счета. В начале первой стадии ключ S 1 замкнут, а ключ S 2 разомкнут. ИнтеграторИ интегрирует входное напряжение U вх. Время интегрирования входного напряжения t 1 постоянно; в качестве таймера используется счетчик с коэффициентом пересчета K сч, так что

К моменту окончания интегрирования выходное напряжение интегратора составляет

. (7)

где U вх.ср. - среднее за время t 1 входное напряжение. После окончания стадии интегрирования ключ S 1 размыкается, а ключ S 2 замыкается и опорное напряжение U оп поступает на вход интегратора. При этом выбирается опорное напряжение, противоположное по знаку входному напряжению. На стадии счета выходное напряжение интегратора линейно уменьшается по абсолютной величине, как показано на рис. 11.

Стадия счета заканчивается, когда выходное напряжение интегратора переходит через нуль. При этом компаратор К переключается и счет останавливается. Интервал времени, в котором проходит стадия счета, определяется уравнением

. (8)

Подставив значение U и (t 1) из (7) в (8) с учетом того, что

где n 2 - содержимое счетчика после окончания стадии счета, получим результат

. (10)

Из этой формулы следует, что отличительной особенностью метода многотактного интегрирования является то, что ни тактовая частота, ни постоянная интегрирования RC не влияют на результат. Необходимо только потребовать, чтобы тактовая частота в течение времени t 1 +t 2 оставалась постоянной. Это можно обеспечить при использовании простого тактового генератора, поскольку существенные временные или температурные дрейфы частоты происходят за время несопоставимо большее, чем время преобразования.

При выводе выражений (6)...(10) мы видели, что в окончательный результат входят не мгновенные значения преобразуемого напряжения, а только значения, усредненные за время t 1 . Поэтому переменное напряжение ослабляется тем сильнее, чем выше его частота.

Определим коэффициент передачи помехи К п для АЦП двухтактного интегрирования. Пусть на вход интегратора поступает гармонический сигнал единичной амплитуды частотой f с произвольной начальной фазой j. Среднее значение этого сигнала за время интегрирования t 1 равно

Эта величина достигает максимума по модулю при j = +/- pk, k=0, 1, 2,... В этом случае

. (12)

Из (12) следует, что переменное напряжение, период которого в целое число раз меньше t 1 , подавляется совершенно (рис. 12). Поэтому целесообразно выбрать тактовую частоту такой, чтобы произведение K сч f такт было бы равным, или кратным периоду напряжения промышленной сети.

Автоматическая коррекция нуля. Преобразование биполярных входных сигналов.

Как следует из (10), статическая точность АЦП многотактного интегрирования определяется только точностью источника опорного напряжения и смещением нуля интегратора и компаратора, которые суммируются с опорным напряжением. Смещение нуля можно устранить автоматической компенсацией. Для этого в цикл преобразования вводят дополнительную стадию установки нуля (см. рис. 11), во время которой интегратор отключается от источников сигналов и совместно с компаратором охватывается глубокой отрицательной обратной связью, как это показано на рис 13. Здесь в качестве компаратора используется ОУ. Между интегратором и входом АЦП включен неинвертирующий повторитель в качестве буферного усилителя Б.

В фазе автоматической компенсации нуля ключи S 1 , S 3 , S 5 разомкнуты, а ключи S 2 , S 4 , S 6 , S 7 - замкнуты. Поэтому интегратор, компаратор и буферный усилитель образуют повторитель напряжения, выходное напряжение которого U к подается на конденсатор автоматической компенсации С ак Входное напряжение буферного усилителя равно нулю, а выходное - его смещению нуля U 0б После окончания переходных процессов на конденсаторе С ак установится напряжение, равное U 0б +U 0и, где U 0и - смещение нуля интегратора. Одновременно конденсатор С оп заряжается от источника опорного напряжения.

На стадии интегрирования входного напряжения ключи S 4 и S 7 размыкаются, а S 1 - замыкается. Так как на это время напряжение на конденсаторе С ак запоминается, смещение нуля в течение фазы интегрирования компенсируется. При этом дрейф нуля определяется только кратковременной нестабильностью, которая очень мала. То же самое сохраняется на стадии счета.

Поскольку в контуре компенсации смещения нуля последовательно включены два усилителя, то легко могут возникнуть автоколебания. Для стабилизации последовательно с ключем S 7 следует включить резистор.

После окончания фазы интегрирования схема управления анализирует выходное напряжение компаратора. Если среднее значение входного напряжения положительно, то на выходе компаратора устанавливается напряжение высокого уровня. В этом случае одновременно с размыканием ключа S 1 замыкаются ключи S 4 и S 5 , подключая ко входу буферного усилителя конденсатор С оп с сохраненным на нем опорным напряжением, причем так, что это напряжение имеет полярность, противоположную полярности источника опорного напряжения. Если среднее значение входного напряжения отрицательно, то на выходе компаратора устанавливается напряжение низкого уровня. Тогда замыкаются ключи S 3 и S 6 , подключая ко входу буферного усилителя опорный конденсатор другими полюсами. В обоих случаях в стадии счета происходит изменение напряжения интегратора U и (t) в направлении, противоположном тому, которое имело место в стадии интегрирования. Одновременно схема управления формирует код знака. Таким образом, в простейшем случае выходной код АЦП представляет собой прямой код со знаком.

Интегральные АЦП многотактного интегрирования изготавливаются в виде полупроводниковых ИМС. Можно различить две главные группы:

    схемы с параллельным или последовательным выходом для сопряжения с микропроцессорами (например, ICL7109, выходное слово которого включает 12 бит плюс знак в параллельном 14-ти или 8-ми разрядном коде, или 18-разрядный плюс знак МАХ132 с последовательным интерфейсом);

    схемы с двоично-десятичными счетчиками с дешифраторами для управления семисегментными индикаторами, в том числе мультиплексированными. Такие АЦП применяются в качестве основы для цифровых вольтметров. Примерами могут служить ICL7106 (отечественный аналог - 572ПВ5) с диапазоном +/-2000 отсчетов или ICL7135 (отечественный аналог - 572ПВ6) с диапазоном +/-40000 отсчетов.

Сигма-дельта АЦП

АЦП многотактного интегрирования имеют ряд недостатков. Во-первых, нелинейность переходной статической характеристики операционного усилителя, на котором выполняют интегратор, заметным образом сказывается на интегральной нелинейности характеристики преобразования АЦП высокого разрешения. Для уменьшения влияния этого фактора АЦП изготавливают многотактными. Например, 13-разрядный AD7550 выполняет преобразование в четыре такта. Другим недостатком этих АЦП является то обстоятельство, что интегрирование входного сигнала занимает в цикле преобразования только приблизительно третью часть. Две трети цикла преобразователь не принимает входной сигнал. Это ухудшает помехоподавляющие свойства интегрирующего АЦП. В-третьих, АЦП многотактного интегрирования должен быть снабжен довольно большим количеством внешних резисторов и конденсаторов с высококачественным диэлектриком, что значительно увеличивает место, занимаемое преобразователем на плате и, как следствие, усиливает влияние помех.

Эти недостатки во многом устранены в конструкции сигма-дельта АЦП (в ранней литературе эти преобразователи назывались АЦП с уравновешиванием или балансом зарядов). Своим названием эти преобразователи обязаны наличием в них двух блоков: сумматора (обозначение операции - S) и интегратора (обозначение операции - D). Один из принципов, заложенных в такого рода преобразователях, позволяющий уменьшить погрешность, вносимую шумами, а следовательно увеличить разрешающую способность - это усреднение результатов измерения на большом интервале времени.

Основные узлы АЦП - это сигма-дельта модулятор и цифровой фильтр. Схема n-разрядного сигма-дельта модулятора первого порядка приведена на рис. 14. Работа этой схемы основана на вычитании из входного сигнала U вх (t) величины сигнала на выходе ЦАП, полученной на предыдущем такте работы схемы. Полученная разность интегрируется, а затем преобразуется в код параллельным АЦП невысокой разрядности. Последовательность кодов поступает на цифровой фильтр нижних частот.

Порядок модулятора определяется численностью интеграторов и сумматоров в его схеме. Сигма-дельта модуляторы N -го порядка содержатN сумматоров иN интеграторов и обеспечивают большее соотношение сигнал/шум при той же частоте отсчетов, чем модуляторы первого порядка. Примерами сигма-дельта модуляторов высокого порядка являются одноканальный AD7720 седьмого порядка и двухканальный ADMOD79 пятого порядка.

Наиболее широко в составе ИМС используются однобитные сигма-дельта модуляторы, в которых в качестве АЦП используется компаратор, а в качестве ЦАП - аналоговый комутатор (рис. 15). Принцип действия пояснен в табл. 2 на примере преобразования входного сигнала, равного 0,6 В, при U оп =1 В. Пусть постоянная времени интегрирования интегратора численно равна периоду тактовых импульсов. В нулевом периоде выходное напряжение интегратора сбрасывается в нуль. На выходе ЦАП также устанавливается нулевое напряжение. Затем схема проходит через показанную в табл. 9 последовательность состояний.

Таблица 2

В тактовые периоды 2 и 7 состояния системы идентичны, так как при неизменном входном сигнале U вх =0,6 В цикл работы занимает пять тактовых периодов. Усреднение выходного сигнала ЦАП за цикл действительно дает величину напряжения 0,6 В:

(1-1+1+1+1)/5=0,6.

Для формирования выходного кода такого преобразователя необходимо каким-либо образом преобразовать последовательность бит на выходе компаратора в виде унитарного кода в последовательный или параллельный двоичный позиционный код. В простейшем случае это можно сделать с помощью двоичного счетчика. Возьмем в нашем примере 4-разрядный счетчик. Подсчет бит на выходе компаратора за 16-ти тактный цикл дает число 13. Несложно увидеть, что при U вх =1 В на выходе компаратора всегда будет единица, что дает за цикл число 16, т.е. переполнение счетчика. Напротив, при U вх =- 1 В на выходе компаратора всегда будет нуль, что дает равное нулю содержимое счетчика в конце цикла. В случае, если U вх =0 то, как это видно из табл. 2, результат счета за цикл составит 8 10 или 1000 2 . Это значит, что выходное число АЦП представляется в смещенном коде. В рассмотренном примере верхняя граница полной шкалы составит 1111 2 или +7 10 , а нижняя - 0000 2 или -8 10 . При U вх =0,6 В, как это видно из левой половины табл. 2, содержимое счетчика составит 13 10 в смещенном коде, что соответствует +5. Учитывая, что +8 соответствует U вх =1 В, найдем

5*1/8=0,625> 0,6 В.

При использовании двоичного счетчика в качестве преобразователя потока битов, поступающих с выхода компаратора, необходимо выделять фиксированный цикл преобразования, длительность которого равна произведению K сч f такт. После его окончания должно производиться считывание результата, например, с помощью регистра-защелки и обнуление счетчика. В этом случае с точки зрения помехоподавляющих свойств сигма-дельта АЦП близки к АЦП многотактного интегрирования. Более эффективно с этой точки зрения применение в сигма-дельта АЦП цифровых фильтров с конечной длительностью переходных процессов.

В сигма-дельта АЦП обычно применяются цифровые фильтры с амплитудно-частотной характеристикой (АЧХ) вида (sinx/x) 3 . Передаточная функция такого фильтра в z-области определяется выражением

,

где М - целое число, которое задается программно и равно отношению тактовой частоты модулятора к частоте отсчетов фильтра. (Частота отсчетов - это частота, с которой обновляются данные).Например, для АЦП AD7714 это число может принимать значения от 19 до 4000. В частотной области модуль передаточной функции фильтра

. (13)

На рис. 16 приведен график амплитудно-частотной характеристики цифрового фильтра, построенной согласно выражению (13) при f такт =38,4 кГц и М=192, что дает значение частоты отсчетов, совпадающей с первой частотой режекции фильтра АЦП, f отсч =50 Гц. Сравнение этой АЧХ с АЧХ коэффициента подавления помех АЦП с двухкратным интегрированием (см. рис. 12) показывает значительно лучшие помехоподавляющие свойства сигма-дельта АЦП.

В то же время применение цифрового фильтра нижних частот в составе сигма-дельта АЦП вместо счетчика вызывает переходные процессы при изменении входного напряжения. Время установления цифровых фильтров с конечной длительностью переходных процессов, как следует из их названия, конечно и составляет для фильтра вида (sinx/x) 3 четыре периода частоты отсчетов, а при начальном обнулении фильтра - три периода. Это снижает быстродействие систем сбора данных на основе сигма-дельта АЦП. Поэтому выпускаются ИМС AD7730 и AD7731, оснащенные сложным цифровым фильтром, обеспечивающие переключение каналов со временем установления 1 мс при сохранении эффективной разрядности не ниже 13 бит (так называемый Fast-Step режим). Обычно цифровой фильтр изготавливается на том же кристалле, что и модулятор, но иногда они выпускаются в виде двух отдельных ИМС (например, AD1555 - модулятор четвертого порядка и AD1556 - цифровой фильтр).

Сравнение сигма-дельта АЦП с АЦП многотактного интегрирования показывает значительные преимущества первых. Прежде всего, линейность характеристики преобразования сигма-дельта АЦП выше, чем у АЦП многотактного интегрирования равной стоимости. Это объясняется тем, что интегратор сигма-дельта АЦП работает в значительно более узком динамическом диапазоне, и нелинейность переходной характеристики усилителя, на котором построен интегратор, сказывается значительно меньше. Емкость конденсатора интегратора у сигма-дельта АЦП значительно меньше (десятки пикофарад), так что этот конденсатор может быть изготовлен прямо на кристалле ИМС. Как следствие, сигма-дельта АЦП практически не имеет внешних элементов, что существенно сокращает площадь, занимаемую им на плате, и снижает уровень шумов. В результате, например, 24-разрядный сигма-дельта АЦП AD7714 изготавливается в виде однокристалльной ИМС в 24-выводном корпусе, потребляет 3 мВт мощности и стоит примерно 14 долларов США, а 18-разрядный АЦП восьмитактного интегрирования HI-7159 потребляет 75 мВт и стоит около 30 долларов. К тому же сигма-дельта АЦП начинает давать правильный результат через 3-4 отсчета после скачкообразного изменения входного сигнала, что при величине первой частоты режекции, равной 50 Гц, и 20-разрядном разрешении составляет 60-80 мс, а минимальное время преобразования АЦП HI-7159 для 18-разрядного разрешения и той же частоты режекции составляет 140 мс. В настоящее время ряд ведущих по аналого-цифровым ИМС фирм, такие как Analog Devices и Burr-Brown, прекратили производство АЦП многотактного интегрирования, полностью перейдя в области АЦ-преобразования высокого разрешения на сигма-дельта АЦП.

Сигма-дельта АЦП высокого разрешения имеют развитую цифровую часть, включающую микроконтроллер. Это позволяет реализовать режимы автоматической установки нуля и самокалибровки полной шкалы, хранить калибровочные коэффициенты и передавать их по запросу внешнего процессора.

Преобразователи напряжение-частота

На базе преобразователей напряжение-частота (ПНЧ) могут быть построены интегрирующие АЦП, обеспечивающие относительно высокую точность преобразования при низкой стоимости. Существует несколько видов ПНЧ. Наибольшее применение нашли ПНЧ с заданной длительностью выходного импульса. Структурная схема такого ПНЧ приведена на рис. 17. По этой схеме построена ИМС VFC-32 (отечественный аналог - 1108ПП1).

Работает ПНЧ следующим образом. Под действием положительного входного сигнала U вх напряжение U и на выходе интегратора И уменьшается. При этом ключ S разомкнут. Когда напряжение U и уменьшится до нуля, компаратор К переключается, запуская тем самым одновибратор. Одновибратор формирует импульс стабильной длительности Т и, который управляет ключем. Последовательность этих импульсов является выходным сигналом ПНЧ. Ключ замыкается и ток I оп в течение Т и поступает на вход интегратора, вызывая увеличение выходного напряжения интегратора. Далее описанный процесс снова повторяется.

Импульсы тока I оп уравновешивают ток, вызываемый входным напряжением U вх. В установившемся режиме

.

Отсюда следует

, (14)

где U вх.ср - среднее значение входного напряжения за период Т. Выражение (14) показывает, что точность преобразования определяется точностью установки опорного тока I оп, точностью выдержки длительности импульса одновибратора Т и, а также точностью резистора R. Емкость конденсатора интегратора не оказывает влияния на частоту ПНЧ.

Таким образом, по существу ПНЧ преобразует входное напряжение в унитарный код. Для его преобразования в двоичный позиционный можно использовать счетчик. Схема интегрирующего АЦП на базе ПНЧ приведена на рис. 18. Двоичный счетчик подсчитывает число импульсов, поступивших от ПНЧ за период Т отсч =1/f отсч, задаваемый отсчетными импульсами, которыми содержимое счетчика заносится в выходной регистр-защелку. Вслед за этим происходит обнуление счетчика. Число импульсов n, подсчитанных счетчиком за время Т отсч,

.

Здесь U вх.ср - среднее значение входного напряжения за весь период Т отсч.

Можно заметно повысить точность ПНЧ, если вместо одновибратора включить тактируемый импульсами стабильной частоты D-триггер. Несложно убедиться (см. рис. 16), что в этом случае ПНЧ превращается в однобитный сигма-дельта модулятор.

Последовательно-параллельные АЦП

    Многоступенчатые АЦП

    Многотактные последовательно-параллельные АЦП

    Конвеерные АЦП

Последовательно-параллельные АЦП являются компромиссом между стремлением получить высокое быстродействие и желанием сделать это по возможности меньшей ценой. Последовательно-параллельные АЦП занимают промежуточное положение по разрешающей способности и быстродействию между параллельными АЦП и АЦП последовательного приближения. Последовательно-параллельные АЦП подразделяют на многоступенчатые, многотактные и конвеерные.

Многоступенчатые АЦП

В многоступенчатом АЦП процесс преобразования входного сигнала разделен в пространстве. В качестве примера на рис. 4 представлена схема двухступенчатого 8-разрядного АЦП.

Верхний по схеме АЦП осуществляет грубое преобразование сигнала в четыре старших разряда выходного кода. Цифровые сигналы с выхода АЦП поступают на выходной регистр и одновременно на вход 4-разрядного быстродействующего ЦАП. Во многих ИМС многоступенчатых АЦП (AD9042, AD9070 и др.) этот ЦАП выполнен по схеме суммирования токов на дифференциальных переключателях, но некоторые (AD775, AD9040A и др.) содержат ЦАП с суммированием напряжений. Остаток от вычитания выходного напряжения ЦАП из входного напряжения схемы поступает на вход АЦП2, опорное напряжение которого в 16 раз меньше, чем у АЦП1. Как следствие, квант АЦП2 в 16 раз меньше кванта АЦП1. Этот остаток, преобразованный АЦП2 в цифровую форму представляет собой четыре младших разряда выходного кода. Различие между АЦП1 и АЦП2 заключается прежде всего в требовании к точности: у АЦП1 точность должна быть такой же как у 8-разрядного преобразователя, в то время как АЦП2 может иметь точность 4-разрядного.

Грубо приближенная и точная величины должны, естественно, соответствовать одному и тому же входному напряжению U вх (t j). Из-за наличия задержки сигнала в первой ступени возникает, однако, временнoе запаздывание. Поэтому при использовании этого способа входное напряжение необходимо поддерживать постоянным с помощью устройства выборки-хранения до тех пор, пока не будет получено все число.

Многотактные последовательно-параллельные АЦП

Рассмотрим пример 8-разрядного последовательно-параллельного АЦП, относящегося к типу многотактных (рис. 5). Здесь процесс преобразования разделен во времени.

Преобразователь состоит из 4-разрядного параллельного АЦП, квант h которого определяется величиной опорного напряжения, 4-разрядного ЦАП и устройства управления. Если максимальный входной сигнал равен 2,56 В, то в первом такте преобразователь работает с шагом квантования h 1 =0,16 В. В это время входной код ЦАП равен нулю. Устройство управления пересылает полученное от АЦП в первом такте слово в четыре старших разряда выходного регистра, подает это слово на вход ЦАП и уменьшает в 16 раз опорное напряжение АЦП. Таким образом, во втором такте шаг квантования h 2 =0,01 В и остаток, образовавшийся при вычитании из входного напряжения схемы выходного напряжения ЦАП, будет преобразован в младший полубайт выходного слова.

Очевидно, что используемые в этой схеме 4-разрядные АЦП и ЦАП должны обладать 8-разрядной точностью, в противном случае возможен пропуск кодов, т.е. при монотонном нарастании входного напряжения выходной код АЦП не будет принимать некоторые значения из своей шкалы. Так же, как и в предыдущем преобразователе, входное напряжение многотактного АЦП во время преобразования должно быть неизменным, для чего между его входом и источником входного сигнала следует включить устройство выборки-хранения.

Быстродействие рассмотренного многотактного АЦП определяется полным временем преобразования 4-разрядного АЦП, временем срабатывания цифровых схем управления, временем установления ЦАП с погрешностью, не превышающей 0,2...0,3 кванта 8-разрядного АЦП, причем время преобразования АЦП входит в общее время преобразования дважды. В результате при прочих равных условиях преобразователь такого типа оказывается медленнее двухступенчатого преобразователя, рассмотренного выше. Однако он проще и дешевле. По быстродействию многотактные АЦП занимают промежуточное положение между многоступенчатыми АЦП и АЦП последовательного приближения. Примерами многотактных АЦП являются трехтактный 12-разрядный AD7886 со временем преобразования 1 мкс, или трехтактный 16-разрядный AD1382 со временем преобразования 2 мкс.

Конвеерные АЦП

Быстродействие многоступенчатого АЦП можно повысить, применив конвеерный принцип многоступенчатой обработки входного сигнала. В обыкновенном многоступенчатом АЦП (рис. 4) вначале происходит формирование старших разрядов выходного слова преобразователем АЦП1, а затем идет период установления выходного сигнала ЦАП. На этом интервале АЦП2 простаивает. На втором этапе во время преобразования остатка преобразователем АЦП2 простаивает АЦП1. Введя элементы задержки аналогового и цифрового сигналов между ступенями преобразователя, получим конвеерный АЦП, схема 8-разрядного варианта которого приведена на рис. 6.

Роль аналогового элемента задержки выполняет устройство выборки-хранения УВХ2, а цифрового - четыре D-триггера. Триггеры задерживают передачу старшего полубайта в выходной регистр на один период тактового сигнала CLK.

Сигналы выборки, формируемые из тактового сигнала, поступают на УВХ1 и УВХ2 в разные моменты времени (рис. 7). УВХ2 переводится в режим хранения позже, чем УВХ1 на время, равное суммарной задержке распространения сигнала по АЦП1 и ЦАП. Задний фронт тактового сигнала управляет записью кодов в D-триггеры и выходной регистр. Полная обработка входного сигнала занимает около двух периодов CLK, но частота появления новых значений выходного кода равна частоте тактового сигнала.

Таким образом, конвеерная архитектура позволяет существенно (в несколько раз) повысить максимальную частоту выборок многоступенчатого АЦП. То, что при этом сохраняется суммарная задержка прохождения сигнала, соответствующая обычному многоступенчатому АЦП с равным числом ступеней, не имеет существенного значения, так как время последующей цифровой обработки этих сигналов все равно многократно превосходит эту задержку. За счет этого можно без проигрыша в быстродействии увеличить число ступеней АЦП, понизив разрядность каждой ступени. В свою очередь, увеличение числа ступеней преобразования уменьшает сложность АЦП. Действительно, например, для построения 12-разрядного АЦП из четырех 3-разрядных необходимо 28 компараторов, тогда как его реализация из двух 6-разрядных потребует 126 компараторов.

Конвеерную архитектуру имеет большое количество выпускаемых в настоящее время многоступенчатых АЦП. В частности, 2-ступенчатый 10-разрядный AD9040А, выполняющий до 40 млн. преобразований в секунду (МПс), 4-ступенчатый 12-разрядный AD9220 (10 МПс), потребляющий всего 250 мВт, и др. При выборе конвеерного АЦП следует иметь в виду, что многие из них не допускают работу с низкой частотой выборок. Например, изготовитель не рекомендует работу ИМС AD9040А с частотой преобразований менее 10 МПс, 3-ступенчатого 12-разрядного AD9022 с частотой менее 2 МПс и т.д. Это вызвано тем, что внутренние УВХ имеют довольно высокую скорость разряда конденсаторов хранения, поэтому работа с большим тактовым периодом приводит к значительному изменению преобразуемого сигнала в ходе преобразования.

Цифро-аналоговые преобразователи

Общие сведения

Цифро-аналоговый преобразователь (ЦАП) предназначен для преобразования числа, определенного, как правило, в виде двоичного кода, в напряжение или ток, пропорциональные значению цифрового кода. Схемотехника цифро-аналоговых преобразователей весьма разнообразна. На рис. 1 представлена классификационная схема ЦАП по схемотехническим признакам. Кроме этого, ИМС цифро-аналоговых преобразователей классифицируются по следующим признакам:

      По виду выходного сигнала: с токовым выходом и выходом в виде напряжения.

      По типу цифрового интерфейса: с последовательным вводом и с параллельным вводом входного кода.

      По числу ЦАП на кристалле: одноканальные и многоканальные.

      По быстродействию: умеренного и высокого быстродействия.

Рис. 1. Классификация ЦАП

Параметры ЦАП

Статические параметры

Динамические параметры

При последовательном возрастании значений входного цифрового сигнала D(t) от 0 до 2 N -1 через единицу младшего разряда (ЕМР) выходной сигнал U вых (t) образует ступенчатую кривую. Такую зависимость называют обычно характеристикой преобразования ЦАП. В отсутствие аппаратных погрешностей средние точки ступенек расположены на идеальной прямой 1 (рис. 22), которой соответствует идеальная характеристика преобразования. Реальная характеристика преобразования может существенно отличаться от идеальной размерами и формой ступенек, а также расположением на плоскости координат. Для количественного описания этих различий существует целый ряд параметров.

Статические параметры

Разрешающая способность - приращение U вых при преобразовании смежных значений D j , т.е. отличающихся на ЕМР. Это приращение является шагом квантования. Для двоичных кодов преобразования номинальное значение шага квантования h=U пш /(2 N -1), где U пш - номинальное максимальное выходное напряжение ЦАП (напряжение полной шкалы), N - разрядность ЦАП. Чем больше разрядность преобразователя, тем выше его разрешающая способность.

Погрешность полной шкалы - относительная разность между реальным и идеальным значениями предела шкалы преобразования при отсутствии смещения нуля.

.

Является мультипликативной составляющей полной погрешности. Иногда указывается соответствующим числом ЕМР.

Погрешность смещения нуля - значение U вых, когда входной код ЦАП равен нулю. Является аддитивной составляющей полной погрешности. Обычно указывается в милливольтах или в процентах от полной шкалы:

.

Нелинейность - максимальное отклонение реальной характеристики преобразования U вых (D) от оптимальной (линия 2 на рис. 22). Оптимальная характеристика находится эмпирически так, чтобы минимизировать значение погрешности нелинейности. Нелинейность обычно определяется в относительных единицах, но в справочных данных приводится также и в ЕМР. Для характеристики, приведенной на рис. 22

.

Дифференциальная нелинейность - максимальное изменение (с учетом знака) отклонения реальной характеристики преобразования U вых (D) от оптимальной при переходе от одного значения входного кода к другому смежному значению. Обычно определяется в относительных единицах или в ЕМР. Для характеристики, приведенной на рис. 22,

.

Монотонность характеристики преобразования - возрастание (уменьшение) выходного напряжения ЦАП U вых при возрастании (уменьшении) входного кода D. Если дифференциальная нелинейность больше относительного шага квантования h/U пш, то характеристика преобразователя немонотонна.

Температурная нестабильность ЦА-преобразователя характеризуется температурными коэффициентами погрешности полной шкалы и погрешности смещения нуля.

Погрешности полной шкалы и смещения нуля могут быть устранены калибровкой (подстройкой). Погрешности нелинейности простыми средствами устранить нельзя.

Динамические параметры

Динамические параметры ЦАП определяются по изменению выходного сигнала при скачкообразном изменении входного кода, обычно от величины "все нули" до "все единицы" (рис. 23).

Время установления - интервал времени от момента изменения входного кода (на рис. 23 t=0) до момента, когда в последний раз выполняется равенство

|U вых -U пш |=d/2,

причем d/2 обычно соответствует ЕМР.

Скорость нарастания - максимальная скорость изменения U вых (t) во время переходного процесса. Определяется как отношение приращенияU вых ко времениt, за которое произошло это приращение. Обычно указывается в технических характеристиках ЦАП с выходным сигналом в виде напряжения. У ЦАП с токовым выходом этот параметр в большой степени зависит от типа выходного ОУ.

Для перемножающих ЦАП с выходом в виде напряжения часто указываются частота единичного усиления и мощностная полоса пропускания, которые в основном определяются свойствами выходного усилителя.

Шумы ЦАП

Шум на выходе ЦАП может появляться по различным причинам, вызываемым физическими процессами, происходящими в полупроводниковых устройствах. Для оценки качества ЦАП с высокой разрешающей способностью принято использовать понятие среднеквадратического значения шума. Измеряются обычно в нВ/Гц) 1/2 в заданной полосе частот.

Выбросы (импульсные помехи) - крутые короткие всплески или провалы в выходном напряжении, возникающие во время смены значений выходного кода за счет несинхронности размыкания и замыкания аналоговых ключей в разных разрядах ЦАП. Например, если при переходе от значения кода 011...111 к значению 100...000 ключ самого старшего разряда ЦА-преобразователя с суммированием весовых токов откроется позже, чем закроются ключи младших разрядов, то на выходе ЦАП некоторое время будет существовать сигнал, соответствующий коду 000...000.

Выбросы характерны для быстродействующих ЦАП, где сведены к минимуму емкости, которые могли бы их сгладить. Радикальным способом подавления выбросов является использование устройств выборки-хранения. Выбросы оцениваются по их площади (в пВ*с).

Параллельные ЦАП

ЦАП с суммированием весовых токов

Большинство схем параллельных ЦАП основано на суммировании токов, сила каждого из которых пропорциональна весу цифрового двоичного разряда, причем должны суммироваться только токи разрядов, значения которых равны 1. Пусть, например, требуется преобразовать двоичный четырехразрядный код в аналоговый сигнал тока. У четвертого, старшего значащего разряда (СЗР) вес будет равен 2 3 =8, у третьего разряда - 2 2 =4, у второго - 2 1 =2 и у младшего (МЗР) - 2 0 =1. Если вес МЗР I МЗР =1 мА, то I СЗР =8 мА, а максимальный выходной ток преобразователя I вых.макс =15 мА и соответствует коду 1111 2 . Понятно, что коду 1001 2 , например, будет соответствовать I вых =9 мА и т.д. Следовательно, требуется построить схему, обеспечивающую генерацию и коммутацию по заданным законам точных весовых токов. Простейшая схема, реализующая указанный принцип, приведена на рис. 3.

Сопротивления резисторов выбирают так, чтобы при замкнутых ключах через них протекал ток, соответствующий весу разряда. Ключ должен быть замкнут тогда, когда соответствующий ему бит входного слова равен единице. Выходной ток определяется соотношением

При высокой разрядности ЦАП токозадающие резисторы должны быть согласованы с высокой точностью. Наиболее жесткие требования по точности предъявляются к резисторам старших разрядов, поскольку разброс токов в них не должен превышать тока младшего разряда. Поэтому разброс сопротивления в k-м разряде должен быть меньше, чем R / R=2 - k .

Из этого условия следует, что разброс сопротивления резистора, например, в четвертом разряде не должен превышать 3%, а в 10-м разряде - 0,05% и т.д.

Рассмотренная схема при всей ее простоте обладает целым букетом недостатков. Во-первых, при различных входных кодах ток, потребляемый от источника опорного напряжения (ИОН), будет различным, а это повлияет на величину выходного напряжения ИОН. Во-вторых, значения сопротивлений весовых резисторов могут различаться в тысячи раз, а это делает весьма затруднительной реализацию этих резисторов в полупроводниковых ИМС. Кроме того, сопротивление резисторов старших разрядов в многоразрядных ЦАП может быть соизмеримым с сопротивлением замкнутого ключа, а это приведет к погрешности преобразования. В-третьих, в этой схеме к разомкнутым ключам прикладывается значительное напряжение, что усложняет их построение.

Эти недостатки устранены в схеме ЦАП AD7520 (отечественный аналог 572ПА1), разработанном фирмой Analog Devices в 1973 году, которая в настоящее время является по существу промышленным стандартом (по ней выполнены многие серийные модели ЦАП). Указанная схема представлена на рис. 4. В качестве ключей здесь используются МОП-транзисторы.

Рис. 4. Схема ЦАП с переключателями и матрицей постоянного импеданса

В этой схеме задание весовых коэффициентов ступеней преобразователя осуществляют посредством последовательного деления опорного напряжения с помощью резистивной матрицы постоянного импеданса. Основной элемент такой матрицы представляет собой делитель напряжения (рис. 5), который должен удовлетворять следующему условию: если он нагружен на сопротивление R н, то его входное сопротивление R вх также должно принимать значение R н. Коэффициент ослабления цепи =U 2 /U 1 при этой нагрузке должен иметь заданное значение. При выполнении этих условий получаем следующие выражения для сопротивлений:

в соответствии с рис.4.

Поскольку в любом положении переключателей S k они соединяют нижние выводы резисторов с общей шиной схемы, источник опорного напряжения нагружен на постоянное входное сопротивление R вх =R. Это гарантирует неизменность опорного напряжения при любом входном коде ЦАП.

Согласно рис. 4, выходные токи схемы определяются соотношениями

,

,

а входной ток

.

Поскольку нижние выводы резисторов 2R матрицы при любом состоянии переключателей S k соединены с общей шиной схемы через низкое сопротивление замкнутых ключей, напряжения на ключах всегда небольшие, в пределах нескольких милливольт. Это упрощает построение ключей и схем управления ими и позволяет использовать опорное напряжение из широкого диапазона, в том числе и различной полярности. Поскольку выходной ток ЦАП зависит от U оп линейно (см. (8)), преобразователи такого типа можно использовать для умножения аналогового сигнала (подавая его на вход опорного напряжения) на цифровой код. Такие ЦАП называют перемножающими (MDAC).

Точность этой схемы снижает то обстоятельство, что для ЦАП, имеющих высокую разрядность, необходимо согласовывать сопротивления R 0 ключей с разрядными токами. Особенно это важно для ключей старших разрядов. Например, в 10-разрядном ЦАП AD7520 ключевые МОП-транзисторы шести старших разрядов сделаны разными по площади и их сопротивление R 0 нарастает согласно двоичному коду (20, 40, 80, : , 640 Ом). Таким способом уравниваются (до 10 мВ) падения напряжения на ключах первых шести разрядов, что обеспечивает монотонность и линейность переходной характеристики ЦАП. 12-разрядный ЦАП 572ПА2 имеет дифференциальную нелинейность до 0,025% (1 МЗР).

ЦАП на МОП ключах имеют относительно низкое быстродействие из-за большой входной емкости МОП-ключей. Тот же 572ПА2 имеет время установления выходного тока при смене входного кода от 000...0 до 111...1, равное 15 мкс. 12-разрядный DAC7611 фирмы Burr-Braun имеет время установления выходного напряжения 10 мкс. В то же время ЦАП на МОП-ключах имеют минимальную мощность потребления. Тот же DAC7611 потребляет всего 2,5 мВт. В последнее время появились модели ЦАП рассмотренного выше типа с более высоким быстродействием. Так 12-разрядный AD7943 имеет время установления тока 0,6 мкс и потребляемую мощность всего 25 мкВт. Малое собственное потребление позволяет запитывать такие микромощные ЦАП прямо от источника опорного напряжения. При этом они могут даже не иметь вывода для подключения ИОН, например, AD5321.

ЦАП на источниках тока

ЦАП на источниках тока обладают более высокой точностью. В отличие от предыдущего варианта, в котором весовые токи формируются резисторами сравнительно небольшого сопротивления и, как следствие, зависят от сопротивления ключей и нагрузки, в данном случае весовые токи обеспечиваются транзисторными источниками тока, имеющими высокое динамическое сопротивление. Упрощенная схема ЦАП на источниках тока приведена на рис. 6.

Рис. 6. Схема ЦАП на источниках тока

Весовые токи формируются с помощью резистивной матрицы. Потенциалы баз транзисторов одинаковы, а чтобы были равны и потенциалы эмиттеров всех транзисторов, площади их эмиттеров делают различными в соответствии с весовыми коэффициентами. Правый резистор матрицы подключен не к общей шине, как на схеме рис. 4, а к двум параллельно включенным одинаковым транзисторам VT 0 и VT н, в результате чего ток через VT 0 равен половине тока через VT 1 . Входное напряжение для резистивной матрицы создается с помощью опорного транзистора VT оп и операционного усилителя ОУ1, выходное напряжение которого устанавливается таким, что коллекторный ток транзистора VT оп принимает значение I оп. Выходной ток для N-разрядного ЦАП

.

Характерными примереми ЦАП на переключателях тока с биполярными транзисторами в качестве ключей являются 12-разрядный 594ПА1 с временем установления 3,5 мкс и погрешностью линейности не более 0,012% и 12-разрядный AD565, имеющий время установления 0,2 мкс при такой же погрешности линейности. Еще более высоким быстродействием обладает AD668, имеющий время установления 90 нс и ту же погрешность линейности. Из новых разработок можно отметить 14-разрядный AD9764 со временем установления 35 нс и погрешностью линейности не более 0,01%.

В качестве переключателей тока S k часто используются биполярные дифференциальные каскады, в которых транзисторы работают в активном режиме. Это позволяет сократить время установления до единиц наносекунд. Схема переключателя тока на дифференциальных усилителях приведена на рис. 7.

Дифференциальные каскады VT 1 -VT 3 и VT" 1 -VT" 3 образованы из стандартных ЭСЛ вентилей. Ток I k , протекающий через вывод коллектора выходного эмиттерного повторителя является выходным током ячейки. Если на цифровой вход D k подается напряжение высокого уровня, то транзистор VT 3 открывается, а транзистор VT" 3 закрывается. Выходной ток определяется выражением

Точность значительно повышается, если резистор R э заменить источником постоянного тока, как в схеме на рис. 6. Благодаря симметрии схемы существует возможность формирования двух выходных токов - прямого и инверсного. Наиболее быстродействующие модели подобных ЦАП имеют входные ЭСЛ-уровни. Примером может служить 12-ти разрядный МАХ555, имеющий время установления 4 нс до уровня 0,1%. Поскольку выходные сигналы таких ЦАП захватывают радиочастотный диапазон, они имеют выходное сопротивление 50 или 75 ом, которое должно быть согласовано с волновым сопротивлением кабеля, подключаемого к выходу преобразователя.

Формирование выходного сигнала в виде напряжения

Существует несколько способов формирования выходного напряжения для ЦАП с суммированием весовых токов. Два из них показаны на рис. 8.

Рис. 8. Формирование напряжения по токовому выходу ЦАП

На рис. 8а приведена схема с преобразователем тока в напряжение на операционном усилителе (ОУ). Эта схема пригодна для всех ЦАП с токовым выходом. Поскольку пленочные резисторы, определяющие весовые токи ЦАП имеют значительный температурный коэффициент сопротивления, резистор обратной связи R ос следует изготавливать на кристалле ЦАП и в том же технологическом процессе, что обычно и делается. Это позволяет снизить температурную нестабильность преобразователя в 300:400 раз.

Для ЦАП на МОП-ключах с учетом (8) выходное напряжение схемы на рис. 8а

Обычно сопротивление резистора обратной связи R ос =R. В таком случае

Большинство моделей ЦАП имеет значительную выходную емкость. Например, у AD7520 с МОП-ключами в зависимости от входного кода С вых составляет величину 30:120 пФ, у AD565А с источниками тока С вых =25 пФ. Эта емкость совместно с выходным сопротивлением ЦАП и резистором R ос создает дополнительный полюс частотной характеристики петли обратной связи ОУ, который может вызвать неустойчивость в виде самовозбуждения. Особенно это опасно для ЦАП с МОП-ключами при нулевом входном коде. При R ос =10 кОм частота второго полюса составит около 100 кГц при 100%-ной глубине обратной связи. В таком случае усилитель, частота единичного усиления которого f т превышает 500 кГц, будет иметь явно недостаточные запасы устойчивости. Для сохранения устойчивости можно включить параллельно резистору R ос конденсатор С к, емкость которого в первом приближении можно взять равной С вых. Для более точного выбора С к необходимо провести полный анализ устойчивости схемы с учетом свойств конкретного ОУ. Эти мероприятия настолько серьезно ухудшают быстродействие схемы, что возникает парадоксальная ситуация: для поддержания высокого быстродействия даже недорогого ЦАП может потребоваться относительно дорогой быстродействующий (с малым временем установления) ОУ.

Ранние модели ЦАП с МОП ключами (AD7520, 572ПА1 и др.) допускают отрицательное напряжение на ключах не свыше 0,7 В, поэтому для защиты ключей между выходами ЦАП следует включать диод Шоттки, как это показано на рис. 8а.

Для цифро-аналогового преобразователя на источниках тока преобразование выходного тока в напряжение может быть произведено с помощью резистора (рис.8б). В этой схеме невозможно самовозбуждение и сохранено быстродействие, однако амплитуда выходного напряжения должна быть небольшой (например, для AD565А в биполярном режиме в пределах + 1 В). В противном случае транзисторы источников тока могут выйти из линейного режима. Такой режим обеспечивается при низких значениях сопротивления нагрузки: R н 1 кОм. Для увеличения амплитуды выходного сигнала ЦАП в этой схеме к ее выходу можно подключить неинвертирующий усилитель на ОУ.

Для ЦАП с МОП-ключами, чтобы получить выходной сигнал в виде напряжения, можно использовать инверсное включение резистивной матрицы (рис. 9).

Рис. 9. Инверсное включение ЦАП с МОП-ключами

Для расчета выходного напряжения найдем связь между напряжением U i на ключе S i и узловым напряжением U" i . Воспользуемся принципом суперпозиции. Будем считать равными нулю все напряжения на ключах, кроме рассматриваемого напряжения U i . При R н =2R к каждому узлу подключены справа и слева нагрузки сопротивлением 2R. Воспользовавшись методом двух узлов, получим

Выходное напряжение ЦАП найдем как общее напряжение на крайнем правом узле, вызванное суммарным действием всех U i . При этом напряжения узлов суммируются с весами, соответствующими коэффициентам деления резистивной матрицы R-2R. Получим

Для определения выходного напряжения при произвольной нагрузке воспользуемся теоремой об эквивалентном генераторе. Из эквивалентной схемы ЦАП на рис. 10 видно, что

Эквивалентное сопротивление генератора R э совпадает со входным сопротивлением матрицы R-2R, т.е. R э =R. При R н =2R из (14) получим

Недостатками этой схемы являются: большое падение напряжения на ключах, изменяющаяся нагрузка источника опорного напряжения и значительное выходное сопротивление. Вследствие первого недостатка по этой схеме нельзя включать ЦАП типа 572ПА1 или 572ПА2, но можно 572ПА6 и 572ПА7. Из-за второго недостатка источник опорного напряжения должен обладать низким выходным сопротивлением, в противном случае возможна немонотонность характеристики преобразования. Тем не менее, инверсное включение резистивной матрицы довольно широко применяется в ИМС ЦАП с выходом в виде напряжения, например, в 12-ти разрядном МАХ531, включающем также встроенный ОУ в неинвертирующем включении в качестве буфера, или в 16-ти разрядном МАХ542 без встроенного буфера. 12-ти разрядный ЦАП AD7390 построен на инверсной матрице с буферным усилителем на кристалле и потребляет всего 0,3 мВт мощности. Правда его время установления достигает 70 мкс.

Параллельный ЦАП на переключаемых конденсаторах

Основой ЦАП этого типа является матрица конденсаторов, емкости которых соотносятся как целые степени двух. Схема простого варианта такого преобразователя приведена на рис. 11. Емкость k-го конденсатора матрицы определяется соотношением

Равный заряд получает и конденсатор С в обратной связи ОУ. При этом выходное напряжение ОУ составит

Для хранения результата преобразования (постоянного напряжения) в течении сколь-нибудь продолжительного времени к выходу ЦАП этого типа следует подключить устройство выборки-хранения. Хранить выходное напряжение неограниченное время, как это могут делать ЦАП с суммированием весовых токов, снабженные регистром-защелкой, преобразователи на коммутируемых конденсаторах не могут из-за утечки заряда. Поэтому они применяются, в основном, в составе аналого-цифровых преобразователей. Другим недостатком является большая площадь кристалла ИМС, занимаемая подобной схемой.

ЦАП с суммированием напряжений

Схема восьмиразрядного преобразователя с суммированием напряжений, изготавливаемого в виде ИМС, приведена на рис. 12. Основу преобразователя составляет цепь из 256 резисторов равного сопротивления, соединенных последовательно. Вывод W через ключи S 0:S 255 может подключаться к любой точке этой цепи в зависимости от входного числа. Входной двоичный код D преобразуется дешифратором 8х256 в унитарный позиционный код, непосредственно управляющий ключами. Если приложить напряжение U AB между выводами А и В, то напряжение между выводами W и B составит

Достоинством данной схемы является малая дифференциальная нелинейность и гарантированная монотонность характеристики преобразования. Ее можно использовать в качестве резистора, подстраиваемого цифровым кодом. Выпускается несколько моделей таких ЦАП. Например, микросхема AD8403 содержит четыре восьмиразрядных ЦАП, выполненных по схеме на рис. 8.12, с сопротивлением между выводами А и В 10, 50 либо 100 кОм в зависимости от модификации. При подаче активного уровня на вход "Экономичный режим" происходит размыкание ключа S откл и замыкание ключа S 0 . ИМС имеет вход сброса, которым ЦАП можно установить на середину шкалы. Фирма Dallas Semiconductor выпускает несколько моделей ЦАП (например, сдвоенный DS1867) с суммированием напряжений, у которых входной регистр представляет собой энергонезависимое оперативное запоминающее устройство, что особенно удобно для построения схем с автоматической подстройкой (калибровкой). Недостаток схемы - необходимость изготавливать на кристалле большое количество (2 N ) согласованных резисторов. Тем не менее, в настоящее время выпускаются 8-ми, 10-ти и 12-ти разрядные ЦАП данного типа с буферными усилителями на выходе, например, AD5301, AD5311 и AD5321.

Последовательные ЦАП

ЦАП с широтно-импульсной модуляцией

Очень часто ЦАП входит в состав микропроцессорных систем. В этом случае, если не требуется высокое быстродействие, цифро-аналоговое преобразование может быть очень просто осуществлено с помощью широтно-импульсной модуляции (ШИМ). Схема ЦАП с ШИМ приведена на рис. 1а.

Рис. 1. ЦАП с широтно-импульсной модуляцией

Наиболее просто организуется цифро-аналоговое преобразование в том случае, если микроконтроллер имеет встроенную функцию широтно-импульсного преобразования (например, AT90S8515 фирмы Atmel или 87С51GB фирмы Intel). Выход ШИМ управляет ключом S. В зависимости от заданной разрядности преобразования (для контроллера AT90S8515 возможны режимы 8, 9 и 10 бит) контроллер с помощью своего таймера/счетчика формирует последовательность импульсов, относительная длительность которых  =t и /Т определяется соотношением

Рассмотренная схема обеспечивает почти идеальную линейность преобразования, не содержит прецизионных элементов (за исключением источника опорного напряжения). Основной ее недостаток - низкое быстродействие.

Последовательный ЦАП на переключаемых конденсаторах

Рассмотренная выше схема ЦАП с ШИМ вначале преобразует цифровой код во временной интервал, который формируется с помощью двоичного счетчика квант за квантом, поэтому для получения N-разрядного преобразования необходимы 2 N временных квантов (тактов). Схема последовательного ЦАП, приведенная на рис. 2, позволяет выполнить цифро-аналоговое преобразование за значительно меньшее число тактов.

В этой схеме емкости конденсаторов С 1 и С 2 равны. Перед началом цикла преобразования конденсатор С 2 разряжается ключом S 4 . Входное двоичное слово задается в виде последовательного кода. Его преобразование осуществляется последовательно, начиная с младшего разряда d 0 . Каждый такт преобразования состоит из двух полутактов. В первом полутакте конденсатор С 1 заряжается до опорного напряжения U оп при d 0 =1 посредством замыкания ключа S 1 или разряжается до нуля при d 0 =0 путем замыкания ключа S 2 . Во втором полутакте при разомкнутых ключах S 1 , S 2 и S 4 замыкается ключ S 3 , что вызывает деление заряда пополам между С 1 и С 2 . В результате получаем

Точно также выполняется преобразование для остальных разрядов слова. В результате для N-разрядного ЦАП выходное напряжение будет равно

Если требуется сохранять результат преобразования сколь-нибудь продолжительное время, к выходу схемы следует подключить УВХ. После окончания цикла преобразования следует провести цикл выборки, перевести УВХ в режим хранения и вновь начать преобразование.

Таким образом, представленная схема выполняет преобразование входного кода за 2N квантов, что значительно меньше, чем у ЦАП с ШИМ. Здесь требуется только два согласованных конденсатора небольшой емкости. Конфигурация аналоговой части схемы не зависит от разрядности преобразуемого кода. Однако по быстродействию последовательный ЦАП значительно уступает параллельным цифро-аналоговым преобразователям, что ограничивает область его применения.

Интерфейсы цифро-аналоговых преобразователей

Важную часть цифро-аналогового преобразователя составляет цифровой интерфейс, т.е. схемы, обеспечивающие связь управляющих входов ключей с источниками цифровых сигналов. Структура цифрового интерфейса определяет способ подключения ЦАП к источнику входного кода, например, микропроцессору или микроконтроллеру. Свойства цифрового интерфейса непосредственно влияют и на форму кривой сигнала на выходе ЦАП. Так, неодновременность поступления битов входного слова на управляющие входы ключей преобразователя приводит к появлению узких выбросов, "иголок", в выходном сигнале при смене кода.

При управлении ЦАП от цифровых устройств с жесткой логикой управляющие входы ключей ЦАП могут быть непосредственно подключены к выходам цифровых устройств, поэтому во многих моделях ИМС ЦАП, особенно ранних (572ПА1, 594ПА1, 1108ПА1, AD565А и др.), сколь-нибудь существенная цифровая часть отсутствует. Если же ЦАП входит в состав микропроцессорной системы и получает входной код от шины данных, то он должен быть снабжен устройствами, позволяющими принимать входное слово от шины данных, коммутировать в соответствии с этим словом ключи ЦАП и хранить его до получения другого слова. Для управления процессом загрузки входного слова ЦАП должен иметь соответствующие управляющие входы и схему управления. В зависимости от способа загрузки входного слова в ЦАП различают преобразователи с последовательным и параллельным интерфейсами входных данных.

ЦАП с последовательным интерфейсом входных данных

Такой преобразователь содержит на кристалле помимо собственно ЦАП дополнительно также последовательный регистр загрузки, параллельный регистр хранения и управляющую логику (рис. 13а). Чаще всего используется трехпроводный интерфейс, который обеспечивает управление ЦА-преобразователем от SPI, QSPI, MICROWIRE интерфейсов процессоров. При активном уровне сигнала CS (в данном случае - нулевом) входное слово длины N (равной разрядности ЦАП) загружается по линии DI в регистр сдвига под управлением тактовой последовательности CLK. После окончания загрузки, выставив активный уровень на линию LD, входное слово записывают в регистр хранения, выходы которого непосредственно управляют ключами ЦАП. Для того, чтобы иметь возможность передавать по одной линии данных входные коды в несколько ЦАП, последний разряд регистра сдвига у многих моделей ЦАП с последовательным интерфейсом соединяется с выводом ИМСDO . Этот вывод подключается ко входу DI следующего ЦАП и т.д. Коды входных слов передаются, начиная с кода самого последнего преобразователя в этой цепочке.

В качестве примера на рис. 13б представлена временнaя диаграмма, отражающая процесс загрузки входного слова в ЦАП AD7233. Минимально допустимые значения интервалов времени (порядка 50 нс), обозначенных на временных диаграммах, указываются в технической документации на ИМС.

На рис. 14 приведен вариант схемы подключения преобразователя с последовательным интерфейсом к микроконтроллеру (МК). На время загрузки входного слова в ЦАП через последовательный порт микроконтроллера, к которому могут быть также подключены и другие приемники, на вход CS (выбор кристалла) подается активный уровень с одной из линий ввода-вывода МК. После окончания загрузки МК меняет уровень на входе CS, как это показано на рис. 8.13б, и, выставив активный уровень на входе LD ЦАП, обеспечивает пересылку входного кода из регистра сдвига ЦАП в регистр хранения. Время загрузки зависит от тактовой частоты МК и обычно составляет единицы микросекунд. В случае, если колебания выходного сигнала ЦАП во время загрузки допустимы, вход LD можно соединить с общей точкой схемы.

Минимальное количество линий связи с ЦАП обеспечивается двухпроводным интерфейсом I 2 C. Этим интерфейсом оснащаются некоторые последние модели ЦАП, например, AD5301. Адресация конкретного устройства осуществляется по линии данных.

ЦАП с параллельным интерфейсом входных данных

Чаще используются два варианта. В первом варианте на N входов данных N-разрядного ЦАП подается все входное слово целиком. Интерфейс такого ЦАП включает два регистра хранения и схему управления (рис. 15а). Два регистра хранения нужны, если пересылка входного кода в ЦАП и установка выходного аналогового сигнала, соответствующего этому коду, должны быть разделены во времени. Подача на вход асинхронного сброса CLR сигнал низкого уровня приводит к обнулению первого регистра и, соответственно выходного напряжения ЦАП.

Пример блок-схемы подключения 12-ти разрядного ЦАП МАХ507 к 16-ти разрядному микропроцессору (МП) приведен на рис. 16. процессор посылает входной код в ЦАП как в ячейку памяти данных. Вначале с шины адрес/данные поступает адрес ЦАП, который фиксируется регистром по команде с выхода ALE микропроцессора и, после дешифрации, активизирует вход CS ЦАП. Вслед за этим МП подает на шину адрес/данные входной код ЦАП и затем сигнал записи на вход WR (см. рис. 15б).

Для подключения многоразрядных ЦАП к восьмиразрядным микропроцессорам и микроконтроллерам используется второй вариант параллельного интерфейса. Он предусматривает наличие двух параллельных загрузочных регистров для приема младшего байта входного слова МБ и старшего байта - СБ (рис. 17). Пересылка байтов входного слова в загрузочные регистры может происходить в любой последовательности.

Применение ЦАП

Схемы применения цифро-аналоговых преобразователей относятся не только к области преобразования код - аналог. Пользуясь их свойствами можно определять произведения двух или более сигналов, строить делители функций, аналоговые звенья, управляемые от микроконтроллеров, такие как аттенюаторы, интеграторы. Важной областью применения ЦАП являются также генераторы сигналов, в том числе сигналов произвольной формы. Ниже рассмотрены некоторые схемы обработки сигналов, включающие ЦА-преобразователи.

Обработка чисел, имеющих знак

До сих пор при описании цифро-аналоговых преобразователей входная цифровая информация представлялась в виде чисел натурального ряда (униполярных). Обработка целых чисел (биполярных) имеет определенные особенности. Обычно двоичные целые числа представляются с использованием дополнительного кода. Таким путем с помощью восьми разрядов можно представить числа в диапазоне от -128 до +127. При вводе чисел в ЦАП этот диапазон чисел сдвигают до 0...255 путем прибавления 128. Числа, большие 128, при этом считаются положительными, а числа, меньшие 128, - отрицательными. Среднее число 128 соответствует нулю. Такое представление чисел со знаком, называется смещенным кодом. Прибавление числа, составляющего половину полной шкалы данной разрядности (в нашем примере это 128), можно легко выполнить путем инверсии старшего (знакового) разряда. Соответствие рассмотренных кодов иллюстрируется табл. 1.

Стив Логан (Maxim Integrated)

Обилие современных аналого-цифровых преобразователей (АЦП) ставит разработчика перед непростым выбором.

Интегральные АЦП имеют разрешением 8…24 бит и даже есть несколько 32-битных. Существуют АЦП встроенные в микроконтроллеры, ПЛИСы, микропроцессоры, системы-на-кристалле, АЦП последовательного приближения (SAR) и сигма-дельта-версии. Конвейерные АЦП используются в тех приложениях где требуется высочайшая скорость выборок. Диапазон скоростей выборок АЦП лежит в пределах от 10 выб/с до свыше 10 Гвыб/с. А разброс цен – от менее $1 до $265 долларов и выше.

Чтобы выбрать наилучший АЦП для вашего приложения, рассмотрим различные типы этих изделий и оптимальные условия применения для их основных типов.

АЦП последовательного приближения – для средних скоростей и «фотографирования» данных

АЦП последовательного приближения (Successive Approximation Register, SAR) выпускаются в широком диапазоне значений разрешения и скорости. Первое, как правило, лежит в пределах 6…8 до 20 бит, вторая же – от нескольких Квыб/с до 10 Мвыб/с. SAR АЦП – хороший выбор для приложений со средним диапазоном скоростей, таких как управление электродвигателем, анализ вибраций, мониторинг производственных процессов. Они не столь быстродействующие, как конвейерные АЦП (которые рассматриваются далее), но их быстродействие выше, чем у сигма-дельта-АЦП (также рассматриваются далее).

Диапазон значений рассеиваемой мощности SAR АЦП напрямую связан с частотой выборки. Например, микросхема, рассеиваемая мощность которой составляет 5 мВт при скорости 1 Мвыб/с, при 1 квыб/с рассеивает 1 мкВт. Таким образом, SAR АЦП достаточно гибкие в плане применения и разработчик может использовать одно наименование для многих приложений.

Еще одно преимущество SAR АЦП: они делают «фотографию» аналогового входного сигнала. SAR-архитектура производит выборку в конкретный момент времени. Когда разработчику может это понадобиться? Когда вам необходимо измерить сразу несколько сигналов, вы можете одновременно делать выборку несколькими одноканальными SAR АЦП или осуществлять одновременную выборку с помощью мультиканального АЦП или нескольких устройств выборки хранения (УВХ, Track-and-hold, T/H-cores) внутри него. Это позволит системе измерять значения нескольких аналоговых сигналов в одно и то же время.

В токовых трансформаторах и трансформаторах напряжения SAR АЦП используются в цепях реализации релейной защиты. С их помощью система защиты одновременно измеряет различные фазы тока и напряжения. В коммунальном сетевом хозяйстве это способствует более эффективному управлению энергосетями.

Сигма-дельта-АЦП – для большей точности

Если вам необходима повышенная точность за счет более высокого уровня семплирования или максимальное значение эффективного количества бит (ENOB), наилучшим выбором станет сигма-дельта-АЦП, особенно для малошумящих точных приложений. Когда скорость не так критична, передискретизация и формирование шума в сигма-дельта-АЦП дают очень высокую точность.

Когда 5…10 лет назад рынок АЦП последовательного приближения только начал насыщаться, многие аналоговые компании инвестировали в многоканальные сигма-дельта-ядра. Сегодняшний результат этого процесса – очень качественные АЦП с разрядностью до 24 или 32 бит и частотой дискретизации от 10 выб/с до 10 Мвыб/с.

В каких приложениях может потребоваться разрешение более 20 бит? Пример применений, в которых стандартно требуется точность на уровне максимально возможного количества бит – измерительные приборы и топливные хроматографы для нефтяной и газовой промышленности. А также другие системные применения, которые задают стандарты в оценке точности аналоговых сигналов, применения, где конечные пользователи должны быть абсолютно уверены в полученных данных.

Нужен ли модулятор?

Новейшие сигма-дельта-АЦП стало сложно классифицировать в значениях скорости и частоты дискретизации. Традиционные сигма-дельта-АЦП осуществляли всю цифровую постобработку внутри себя (в том числе, с помощью SINC/отсекающих фильтров, децимации, формирования шума). После этого данные последовательно выдавались наружу с очень высоким ENOB (Effective Number of Bits – эффективное количество бит). Например, если у вас был 24-битный АЦП, выходные данные выдавались в 24-битном формате. Первый бит был наибольшим значащим (MSB), а 24-й – наименьшим (LSB). Скорость выдачи данных в обычном случае равнялась системной тактовой частоте, деленной на 24. Это были не самые быстрые и не самые гибкие АЦП.

В последние 5…10 лет более популярны стали сигма-дельта-модуляторы, в частности – в приложениях, требующих повышенной скорости (часто около 1 Мвыб/с и более). Не ожидая полной оцифровки 24-битного выхода, сигма-дельта-модулятор выдает поток данных побитово, перекладывая задачу цифровой фильтрации для дальнейшего анализа данных на плечи процессора или ПЛИС.

Эта гибкость модулятора полезна для таких приложений, как управление электродвигателем, где может вполне хватить разрядности 12…16 бит. Контроллер двигателя может и не нуждаться в 8 младших значащих битах из 24-битного потока данных, если первые 16 бит обеспечивают достаточную точность аналогового измерения.

Последовательные АЦП против сигма-дельта: главное – скорость

Еще одна важная тема для обсуждения – входные фильтры. Вспомним, что последовательная архитектура АЦП позволяет сделать быстрый кадр. Когда приложению требуется повышенная частота выборки, входной фильтр становится более сложным. Затем во многих случаях для «раскачки» входного конденсатора и быстрого гашения колебаний необходим внешний буфер или усилитель, и этот усилитель должен иметь достаточную полосу пропускания. На рисунке 1 показан пример включения 16-битного последовательного АЦП MAX11166 500 квыб/с. Чем выше разрядность и больше скорость дискретизации – тем короче отрезок времени, необходимый для согласования входа и корректного считывания данных.

На рисунке 1 используются усилитель MAX9632 с полосой усиления 55 МГц и простой RC-фильтр. Этот конкретный усилитель обеспечивает шум менее 1 нВ/√Гц, что дает системное разрешение на уровне 1/10 дБ эффективного бита.

В сравнении с АЦП последовательного приближения, данные со входа сигма-дельта-АЦП считываются много раз, поэтому требования к сглаживающему фильтру не так критичны. Зачастую достаточно простого RC-фильтра. На рисунке 2 показан пример подключения 24-битного сигма-дельта АЦП MAX11270 64 квыб/с. Это – так называемый мост Уитстоуна с конденсатором 10 нФ, включенным между дифференциальными входами.

Конвейерные АЦП – для сверхвысокой частоты дискретизации

В этой статье мы уже упомянули конвейерные АЦП как востребованные для получения наиболее высоких частот дискретизации, к примеру, в РЧ-приложениях и SDR – беспроводном радио с программным заданием частоты.

За последние 10 лет крупнейшие производители аналоговых микросхем активно инвестировали в разработку конвейерных АЦП. Два основных преимущества конвейерных АЦП – скорость и мощность. С учетом частот дискретизации от 10 Мвыб/с до нескольких Гвыб/с, наиболее критичным становится выбор для этих изделий интерфейсов. Ожидается «большая битва» вокруг цифровых выходов конвейерных АЦП. В качестве основного до сих пор предлагался параллельный интерфейс, но и последовательный LVDS-интерфейс вполне подходит, например, для ультразвуковых приложений с большим количеством каналов и частотой дискретизации в пределах 50…65 Мвыб/с. Однако уже существуют новые типы интерфейсов.

Последовательный интерфейс JESD204B

JESD204B – это высокоскоростной последовательный интерфейс с передачей данных до 12,5 Гбит/с. Возникнув сравнительно недавно, он позволил производителям АЦП значительно повысить частоты дискретизации, а за ними подтянулись производители процессоров и ПЛИС со своими последовательными приемопередатчиками.

В многоканальном приложении с несколькими параллельно включенными АЦП проблемой являются запутанные соединения между АЦП и ПЛИС/процессором. При применении интерфейса JESD204B число линий данных значительно сокращается, экономя тем самым пространство платы. На рисунке 3 показаны одна последовательная выходная пара и вход синхронизации этого интерфейса, что значительно сокращает требуемое количество контактов для ввода-вывода.

Энергопотребление конвейерных АЦП

По мере роста миниатюризации изделий лидирующие производители АЦП все интенсивнее борются за сокращение энергопотребления. Хорошие показатели – 1 мВт на 1 Мвыб/с. Если показатели вашего АЦП близки к этому, то у вас есть, от чего оттолкнуться в создании проекта.

АЦП, оптимизированные для микроконтроллеров, ПЛИС, ЦПУ и систем-на-кристалле

АЦП, встроенные в микросхемы, как правило, не самые производительные. Изначально, когда в микросхему встраивался 12-битный АЦП, предполагалось, что он будет работать как 8-битный для получения гарантированных значений эффективного количества бит (ENOB) или линейности. Для обеспечения нужных характеристик работы АЦП пользователю необходимо тщательно изучить параметры полной спецификации и определить, какие из них должны иметь гарантированные значения. Однако зачастую просматривались только стандартные характеристики или минимальные и максимальные значения параметров из кратких спецификаций.

В последнее время такие характеристики АЦП как интегральная нелинейность (INL), дифференциальная нелинейность (DNL), ошибка усиления и эффективное количество бит (ENOB) значительно улучшились, что позволило более активно встраивать АЦП в микроконтроллеры, и число микросхем со встроенными АЦП значительно возросло. В настоящее время, если приложению требуется преобразование с разрешением 12 бит и менее или всего несколько каналов преобразования, наиболее экономичным решением является микроконтроллер.

Производители ПЛИС также начали встраивать АЦП в свои системы. Например, компания Xilinx размещает 12-битный 1 Мвыб/с АЦП во всех ПЛИС 7 серии и системах-на-кристалле Zynq. Однако весьма важным является расположение АЦП на плате. Процессорный модуль с ПЛИС или системой-на-кристалле может находиться на значительном удалении от аналогового входа, который вообще может размещаться на отдельной плате, соединенной с процессорной платой посредством высокоскоростной цифровой шины. Если вы не хотите подвергать чувствительные аналоговые сигналы такому испытанию, то встроенное в процессор или ПЛИС АЦП – не ваш выбор. В этом случае вам определенно понадобится отдельный качественный АЦП. Например, для программируемых логических контроллеров (PLC) это, скорее всего, будет 24-битный сигма-дельта-АЦП.

Если мы заговорили о PLC, следует упомянуть о таком важном элементе как изоляция. Большинство аналоговых входов PLC включает несколько форм изоляции, обычно цифровой. Многие модули с аналоговыми входами содержат недорогие микроконтроллеры для быстрых отклика и прерываний. В этом случае расположение изоляции подсказывает, следует ли применить встроенный АЦП. Если изоляция расположена между процессором (или микроконтроллером) и шиной, встроенный АЦП подходит. Если микроконтроллер требуется изолировать от высоковольтных входных сигналов, тогда лучшим решением являются интегральный АЦП и цифровой изолятор.

Какой выбор наилучший?

Мы обсудили несколько характеристик современных АЦП. А насколько важны скорость, мощность и точность сигналов, которые вы измеряете?

Если вам необходимо простое считывание с низким разрешением для домашнего использования, это смогут, по всей вероятности, проделать АЦП, встроенные в микроконтроллер, ПЛИС, процессор или систему-на-кристалле АЦП. Если ваше приложение низкоскоростное (входной аналоговый сигнал близок к постоянному току, например, медленно изменяющийся сигнал температуры), оптимальным выбором является сигма-дельта-АЦП. Если сигнал на входе изменяется достаточно быстро, как в случае с анализом вибраций мотора, работающего со скоростью около 1000 оборотов в минуту, наилучшим вариантом является последовательный (SAR) АЦП. Если приложение должно измерять наиболее быстро изменяющиеся аналоговые сигналы из существующих, тогда лучший выбор – конвейерный АЦП.

Главная фраза, о которой не стоит забывать в процессе выбора АЦП – «это зависит от…». Если вы разработчик цифровых схем или эксперт по источникам питания, озадаченный выбором правильного АЦП — вы изучите подробные инструкции. АЦП – это сложные микросхемы с множеством нюансов, требующие тщательного изучения технического описания и отладочных комплектов. В таблице 1 приведены минимальные и максимальные параметры АЦП, доступных на рынке. Это реальная картина сегодняшнего дня. Кто знает, как она изменится в ближайшие годы?

Таблица 1. Стандартный диапазон характеристик АЦП

Тип АЦП/Характеристики Частота дискретизации/скорость Разрешение/бит Цена Мощность
АЦП последовательного приближения (SAR) Постоянный ток…10 Мвыб/с 8…20 Малая/средняя Самая малая
в пересчете на квыб/с
Сигма-дельта-АЦП Постоянный ток…20 Мвыб/с* 16…32 Малая/средняя Малая/средняя
Конвейерный АЦП 10 Мвыб/с…5 Гвыб/с 8…16 Самая высокая Самая высокая
АЦП, встроенный в МК/ПЛИС/СнК Постоянный ток…1 Мвыб/с 8…16 Самая малая Малая/средняя

* – скорость выхода модулятора

© 2024 baraxlo2020.ru -- Немного о компьютере и современных гаджетах