Виды вирусов. Строение вирусов Сложно устроенные вирусы имеют

Главная / Интернет

Основным структурным компонентом вирионов (полных вирусных частиц) является нуклеокапсид, т.е. белковый чехол (капсид) в котором заключен вирусный геном (ДНК или РНК). Нуклеокапсид большинства семейств вирусов окружен липопротеиновой оболочкой. Между оболочкой и нуклеокапсидом у некоторых вирусов (орто-, парамиксо-, рабдо-, фило- и ретровирусов) находится негликозилированный матриксный белок, придающий дополнительную жесткость вирионам. Вирусы большинства семейств имеют оболочку, которая играет важную роль в инфекционности. Наружный слой оболочки вирионы приобретают, когда нуклеокапсид проникает через клеточную мембрану почкованием.

Белки оболочки кодируются вирусом, а липиды заимствуются из мембраны клетки. Гликопротеины обычно в виде димеров и тримеров образуют пепломеры (выступы) на поверхности вирионов (орто-, парамиксовирусы, рабдо-, фило-, корона-, бунья-, арена-, ретровирусы). Гликозилированные белки слияния связаны с пепломерами и выполняют ключевую роль в проникновении вируса в клетку. Капсиды и оболочки вирионов образуются множеством копий одного или нескольких видов белковых субъединиц в результате процесса самосборки. Взаимодействие в системе белок-белок, благодаря слабым химическим связям, ведет к объединению симметричных капсидов.
Различия вирусов по форме и размеру вирионов зависят от формы, размера и количества структурных белковых субъединиц и природы взаимодействия между ними.

Капсид состоит из множества морфологически выраженных субъединиц (капсомеров), собранных из вирусных полипептидов строго определенным образом, в соответствии с относительно простыми геометрическими принципами. Белковые субъединицы, соединяясь друг с другом, образуют капсиды двух видов симметрии: изометрические и спиральные. Структура нуклеокапсида оболочечных вирусов сходна со структурой нуклеокапсида безоболочечных вирусов. На поверхности оболочки вирусов различают морфологически выраженные гликопротеиновые структуры - пепломеры.

В состав суперкапсидной оболочки входят липиды (до 20-35%) и углеводы (до 7-8%), имеющие клеточное происхождение. Она состоит из двойного слоя клеточных липидов и вирусспецифических белков, расположенных снаружи и изнутри липидного биослоя. Наружный слой суперкапсидной оболочки представляют пепломеры (выступы) одного или более типов, состоящие из одной или нескольких молекул гликопротеинов. Нуклеокапсид у оболочечных вирусов часто называют сердцевиной (core), а центральную часть вирионов, содержащую нуклеиновую кислоту, называют нуклеоидом.

Капсомеры (пепломеры) состоят из структурных единиц, построенных из одной либо из нескольких гомологичных или гетерологичных полипептидных цепей (белковых субъединиц).

Изометрические капсиды представляют собой не сферы, а правильные многогранники (икосаэдры). Их линейные размеры идентичны по осям симметрии. Согласно Каспару и Клугу (1962), капсомеры в капсидах расположены в соответствии с икосаэдрической симметрией.

Такие капсиды состоят из идентичных субъединиц, образующих икосаэдр. Они имеют 12 вершин (углов), 30 граней и 20 поверхностей в виде равнобедренных треугольников. В соответствии с этим правилом капсид полиовируса и вируса ящура образован 60 белковыми структурными единицами, каждая из которых состоит из четырех полипептидных цепей.

Икосаэдр оптимально решает проблему укладки повторяющихся субъединиц в строгую компактную структуру при минимальном объеме. Только некоторые конфигурации структурных субъединиц могут сформировать поверхности, образовать вершины и грани вирусного икосаэдра. Например, структурные субъединицы аденовируса на поверхностях и гранях формируют шестигранные капсомеры (гексоны), а на вершинах - пятигранные капсомеры (пептоны). У одних вирусов оба вида капсомеров образуются одними и теми же полипептидами, у других - разными полипептидами. Так как структурные субъединицы разных вирусов различаются между собой, то одни вирусы кажутся более гексагональными, другие - более сферическими.

Все известные ДНК-содержащие вирусы позвоночных, за исключением вирусов оспы, а также многие РНК-содержащие вирусы (7 семейств) имеют кубический тип симметрии капсида.

Реовирусы , в отличие от других вирусов позвоночных, имеют двойной кап-сид (наружный и внутренний), причем каждый состоит из морфологических единиц.

Вирусы , обладающие спиральным типом симметрии, имеют вид цилиндрической нитевидной структуры, их геномная РНК имеет вид спирали и находится внутри капсида. Все вирусы животных спиральной симметрии окружены липопротеиновой оболочкой.

Спиральные нуклеокапсиды характеризуются длиной, диаметром, шагом спирали и числом капсомеров, приходящихся на один оборот спирали. Так, у вируса Сендай (парамиксовирус) нуклеокапсид представляет собой спираль длиной около 1 мкм, диаметром 20 нм и шагом спирали 5 нм. Капсид состоит примерно из 2400 структурных единиц, каждая из которых является белком с молекулярной массой 60 кД. На каждый виток спирали приходится 11-13 субъединиц.

У вирусов со спиральным типом симметрии нуклеокапсида укладка белковых молекул в спираль обеспечивает максимальное взаимодействие между нуклеиновой кислотой и белковыми субъединицами. У икосаэдрических вирусов нуклеиновая кислота находится внутри вирионов в скрученном состоянии и взаимодействует с одним или несколькими полипептидами, расположенными внутри капсида.

50. Анафилактический шок и сывороточная болезнь. Анафилаксия пред­ставляет собой реакцию немедленного типа, возникающую при парентеральном повторном введении антигена в ответ на повреждающее действие комплекса антиген - антитело и характеризу­ющуюся стереотипно протекающей клинической и морфологи­ческой картиной. Основную роль в анафилаксии играет цитотропный IgE, име­ющий сродство к клеткам, в частности базофилам и тучным клеткам. После первого контакта организма с антигеном обра­зуется IgE, который вследствие цитотропности адсорбируется на поверхности названных выше клеток. При повторном попадании в организм этого же антигена IgE связывает антиген с образо­ванием на мембране клеток комплекса IgE - антиген. Комплекс повреждает клетки, которые в ответ на это выделяют медиато­ры - гистамин и гистаминоподобные вещества (серотонин, кинин). Эти медиаторы связываются рецепторами, имеющимися на поверхности функциональных мышечных, секреторных, сли­зистых и других клеток, вызывая их соответствующие реакции. Это ведет к сокращению гладкой мускулатуры бронхов, кишеч­ника, мочевого пузыря, повышению проницаемости сосудов и другим функциональным и морфологическим изменениям, ко­торые сопровождаются клиническим проявлением. Клинически анафилаксия проявляется в виде одышки, удушья, слабости, беспокойства, судорог, непроизвольного мочеиспускания, дефе­кации и др. Анафилактическая реакция протекает в три фазы: в 1-й фазе происходит сама реакция антиген - антитело; во 2-й фазе выделяются медиаторы анафилактической реакции; в 3-й фазе проявляются функциональные изменения. Анафилактическая реакция возникает спустя несколько ми­нут или часов после повторного введения антигена. Протекает в виде анафилактического шока или как местные проявления. Ин­тенсивность реакции зависит от дозы антигена, количества об­разующихся антител, вида животного и может закончиться выз­доровлением или смертью. Анафилаксию легко можно вызвать в эксперименте на животных. Оптимальной моделью для воспро­изведения анафилаксии является морская свинка. Анафилаксия может возникать на введение любого антигена любым способом (подкожно, через дыхательные пути, пищеварительный тракт) при условии, что антиген вызывает образование иммуноглобу­линов. Доза антигена, вызывающая сенсибилизацию, т. е. повы­шенную чувствительность, называется сенсибилизирующей. Она обычно очень мала, так как большие дозы могут вызвать не сенсибилизацию, а развитие иммунной защиты. Доза антигена, введенная уже сенсибилизированному к нему животному и вы­зывающая проявление анафилаксии, называется разрешающей. Разрешающая доза должна быть значительно больше, чем сен­сибилизирующая. Состояние сенсибилизации после встречи с антигеном сохра­няется месяцами, иногда годами; интенсивность сенсибилизации можно искусственно уменьшить введением малых разрешающих доз антигена, которые связывают и выводят из циркуляции в организме часть антител. Этот принцип был использован для де­сенсибилизации (гипосенсибилизации), т.е. предупреждения ана­филактического шока при повторных введениях антигена. Впер­вые способ десенсибилизации предложил русский ученый А. Без­редка (1907), поэтому он называется способом Безредки. Спо­соб состоит в том, что человеку, ранее получавшему какой-либо антигенный препарат (вакцину, сыворотку, антибиотики, пре­параты крови и др.), при повторном введении (при наличии у него повышенной чувствительности к препарату) вначале вво­дят небольшую дозу (0,01; 0,1 мл), а затем, через 1-1"/ 2 ч, - основную. Таким приемом пользуются во всех клиниках для из­бежания развития анафилактического шока; этот прием являет­ся обязательным. Возможен пассивный перенос анафилаксии с антителами. Сывороточной болезнью называют реакцию, возникающую при разовом парентеральном введении больших доз сывороточных и других белковых препаратов. Обычно реакция возникает спустя 10-15 сут. Механизм сывороточной болезни связан с образова­нием антител против введенного чужеродного белка (антигена) и повреждающим действием на клетки комплексов антиген - антитело. Клинически сывороточная болезнь проявляется отеком кожи и слизистых оболочек, повышением температуры тела, при-пуханием суставов, сыпью и зудом кожи; наблюдаются измене­ния в крови (увеличение СОЭ, лейкоцитоз и др.). Сроки про­явления и тяжесть сывороточной болезни зависят от содержа­ния циркулирующих антител и дозы препарата. Это объясняется тем, что ко 2-й неделе после введения белков сыворотки выра­батываются антитела к белкам сыворотки и образуется комплекс антиген - антитело. Профилактика сывороточной болезни осу­ществляется по способу Безредки.

В многовековой истории нашей планеты в развитие всей флоры и фауны постоянно вмешивались невидимые захватчики – вирусы (лат. virus – яд).
В связи с микроскопическим размером вирусы лишены такого сложного внутреннего многоклеточного строения как у живых организмах, так как они в разы меньше любой живой клетки и даже намного меньше какой-либо бактерии. Влиянию вирусов подвержены все известные живые организмы, не только люди, животные, рептилии и рыбы, но и всевозможные растения.
Только в начале 20-ого века, после изобретения электронного микроскопа, ученые смогли увидеть своими глазами крошечных возбудителей болезней, о которых до того момента уже было высказано великое множество теорий. Определенные вирусы человека отличались между собой по форме и размеру. В зависимости от типа болезни симптомы разных заболеваний проявляются по-разному: воспаляется кожа, внутренние органы или суставы.

Вирусная инфекция

В 1852 году Дмитрию Иосифовичу Ивановскому (русский ботаник) удалось получить инфекционный экстракт из растений табака, который был заражен мозаичной болезнью. Такая структура получила название вируса табачной мозаики.

Строение вируса


В самом центре вирусной частицы располагается геном (наследственная информация, которая представлена ДНК или РНК структурой – позиция 1). Вокруг генома располагается капсид (позиция 2), который представлен белковой оболочкой. На поверхности белковой оболочки капсида располагается липопротеидная оболочка (позиция 3). Внутри оболочки располагаются капсомеры (позиция 4). Каждый капсомер состоит из одной или двух белковых нитей. Число капсомеров для каждого вируса строго постоянно. Каждый вирус содержит определенное число капсомеров, поэтому их количество у разных видов вируса
существенно отличается. Некоторые вирусы не имеют в своем строении белковой оболочки (капсида). Такие вирусы называют простыми. И наоборот, вирусы, которые в своем строении имеют еще одну наружную (дополнительную липопротеидную) оболочку называются сложными. У вирусов различают две жизненные формы. Внеклеточная жизненная форма вируса называется варион (состояние покоя, ожидания). Внутриклеточная форма жизни вируса, которая активно репродуцирует, называется вегетативная.

Свойства вирусов

Вирусы не имеют клеточного строения, их относят к мельчайшим живым организмам, воспроизводятся внутри клеток, имеют простое строение, большинство из них вызывают различные болезни, каждый тип вируса распознает и инфицирует лишь определенные типы клеток, содержат только один тип нуклеиновой кислоты (ДНК или РНК).

Классификация вирусов

Как клетки организма усваивают вещества

В отличие от других живых организмов вирусу для воспроизводства потомства нужны живые клетки. Сам по себе он не умеет размножаться. К примеру, клетки организма человека состоят из ядра (в нем сосредоточена ДНК — генетическая карта, план действий клетки для поддержания ее жизнедеятельности). Ядро клетки окружает цитоплазма, в которой расположены митохондрии (они вырабатывают энергию для химических реакций, лизосомы (в них расщепляются поступившие из вне материалы), полисомы и рибосомы (в них вырабатываются белки и ферменты для осуществления химических реакций, которые происходят в клетке). Вся цитоплазма клетки, вернее ее пространство пронизано сетью канальцев, по которым всасываются нужные вещества, а также выводятся ненужные. Также клетка окружена мембраной, которая защищает ее и выполняет роль двустороннего фильтра. Мембрана клетки постоянно вибрирует. При наличии на поверхности мембраны корпускулу белка она изгибается и заключает его в пищеварительный пузырек, который втягивает в клетку. Далее мозговой центр клетки (ядро) распознает поступившее извне вещество и дает серию команд центрам, которые расположены в цитоплазме. Они разлагают поступившее вещество на более простые соединения. Часть полезных соединений используют для поддержания жизнедеятельности и выполнения запрограммированных функций, а ненужные соединения выводят наружу из клетки. Так осуществляется процесс поглощения, переваривания, усвоения веществ в клетке и вывода ненужных наружу.

Размножение вирусов


Как отмечалось выше, вирусу для воспроизводства себе подобных нужны живые клетки, потому что сам по себе он не умеет размножаться. Процесс проникновения вируса в клетку состоит из нескольких этапов.

Первый этап проникновения вируса в клетку заключается в осаждении (адсорбции посредством электрического взаимодействия) его на поверхности клетки – мишени. Клетка – мишень должна в свою очередь обладать соответствующими поверхностными рецепторами. Без наличия соответствующих поверхностных рецепторов вирус не может присоединиться к клетке. Поэтому, такой вирус, который присоединился к клетке в результате электрического взаимодействия можно убрать путем встряхивания. Второй этап проникновения вируса в клетку называют необратимым. При наличии соответствующих рецепторов вирус прикрепляется к клетке и белковые шипы или нити начинают взаимодействовать с рецепторами клетки. В качестве рецепторов клетки выступает белок или гликопротеид, который обычно специфичен для каждого вируса.

Во время третьего этапа вирус всасывается (перемещается) в клеточной мембране с помощью внутриклеточных мембранных пузырьков.

В четвертом этапе ферменты клетки расщепляют вирусные белки, и таким образом освобождается из «заточения» геном вируса, в котором располагается наследственная информация, которая представлена ДНК или РНК структурой. Затем спираль РНК быстро разворачивается и устремляется в ядро клетки. В ядре клетки геном вируса изменяет генетическую информацию клетки и реализует свою. В результате таких изменений работа клетки полностью дезорганизуется и вместо нужных ей белков и ферментов клетка начинает синтезировать вирусные (видоизменённые) белки и ферменты.


Время прошедшее с момента проникновения вируса в клетку до выхода новых варионов называется скрытым, или латентным периодом. Оно может изменяться от нескольких часов (оспа, грипп) до нескольких суток (корь, аденовирус).

Вирусы относятся к царству Virae (от лат. virus - «яд»). Это мельчайшие микроорганизмы («фильтрующиеся агенты»), не имеющие клеточного строения, белоксинтезирующей системы, содержащие один тип нуклеиновой кислоты (или ДНК, или рибонуклеиновой кислоты - РНК).

Морфологию и структуру вирусов изучают с помощью электронной микроскопии, так как их размеры малы и сравнимы с толщиной оболочки бактерий. Форма вирионов может быть палочковидной (вирус табачной мозаики), пулевидной (вирус бешенства), сферической (вирусы полиомиелита, вирус иммунодефицита человека - ВИЧ), нитевидной (филовирусы) или в виде сперматозоида (многие бактериофаги - см. главу 3). Наиболее мелкими являются парвовирусы (18 нм) и вирус полиомиелита (около 20 нм), наиболее крупным - вирус натуральной оспы (около 350 нм).

Различают ДНК- и РНК-содержащие вирусы. Геном вирусов содержит от шести до нескольких сотен генов и представлен различными видами нуклеиновых кислот: дву-, однонитевыми, линейными, кольцевыми, фрагментированными. Среди однонитевых РНК-содержащих вирусов различают вирусы с плюс-нитью РНК и вирусы с минус-нитью РНК (полярность РНК). Плюс-нить РНК (позитивная нить) выполняет наследственную (геномную) функцию и функцию матричной, или информационной, РНК (иРНК), являясь матрицей для белкового синтеза на рибосомах инфицированной клетки. Плюс-нить РНК является инфекционной: при введении в чувствительные клетки она способна вызвать инфекционный процесс. Минус-нить (негативная нить) выполняет только наследственную функцию; для синтеза белка на минус-нити РНК синтезируется комплементарная ей нить. У некоторых вирусов РНК-геном содержит плюс- и минус-сегменты РНК.

Простые, или безоболочечные, вирусы капсидом (от лат. capsa - нуклеопротеины, нуклеокапсидом.

Рис. 2.8.

капсомеры, (адсорбции) (лизиса).

Сложные, или оболочечные, вирусы (суперкапсид), гликопротеиновые шипы, или шипики. матриксный белок (М-белок).

Таким образом, простые вирусы сложные

Различают простые вирусы (например, вирусы полиомиелита, гепатита А) и сложные вирусы (например, вирусы кори, гриппа, герпеса).

Простые, или безоболочечные, вирусы (рис. 2.8) имеют только нуклеиновую кислоту, связанную с белковой структурой, называемой капсидом (от лат. capsa - «футляр»). Протеины, связанные с нуклеиновой кислотой, известны как нуклеопротеины, а ассоциация вирусных протеинов капсида вируса с вирусной нуклеиновой кислотой названа нуклеокапсидом.

Рис. 2.8. Строение простых и сложных вирусов с икосаэдрическим капсидом. Внизу справа - сложный вирус со спиральным капсидом

Капсид включает повторяющиеся морфологические субъединицы - капсомеры, скомпанованные из нескольких полипептидов. Капсид защищает нуклеиновую кислоту от деградации. У простых вирусов капсид участвует в прикреплении (адсорбции) к клетке хозяина. Простые вирусы выходят из клетки в результате ее разрушения (лизиса).

Сложные, или оболочечные, вирусы (см. рис. 2.8) кроме капсида имеют мембранную двойную липопротеиновую оболочку (суперкапсид), которая приобретается путем почкования вириона через мембрану клетки, например, через плазматическую мембрану, мембрану ядра или мембрану эндоплазматического ретикулума. На оболочке вируса расположены гликопротеиновые шипы, или шипики. Разрушение оболочки эфиром и другими растворителями инактивирует сложные вирусы. Под оболочкой некоторых вирусов находится матриксный белок (М-белок).

Таким образом, простые вирусы состоят из нуклеиновой кислоты и капсида, а сложные - из нуклеиновой кислоты, капсида и липопротеиновой оболочки.

Определение 1

Строение вирусов

Основа вирусной частицы – молекулы нуклеиновой кислоты ДНК или РНК, при этом форма и число молекул могут сильно варьировать у разных видов.

Нуклеиновая кислота вируса упакована внутри капсида – белковой оболочки. При этом внутри капсида кроме нуклеиновой кислоты могут находиться различные ферменты, помогающие вирусу проникать в клетку хозяина или размножаться.

Для вирусов характерен дизъюнктивный способ репродукции, что означает, что синтез различных компонентов вирусной частицы происходит в разных частях инфицированной вирусом клетки. После синтеза нуклеиновой кислоты и необходимых белков, происходит самосборка вирусной частицы и выход ее из клетки. После прохождения полного цикла внутри клетки, зрелый вирус называется вирионом.

Замечание 1

Вирусные частицы имеют очень маленький размер и изучение их строения требует использования электронной микроскопии, методом ультрафильтрации, ультрацентрифугирования и методов молекулярной биологии (полимеразная цепная реакция, секвенирование). Кроме того, для изучения патологического процесса, вызываемого вирусом, используются биологические модели – культуры клеток, эмбрионы кур и лабораторные животные.

Существует разнообразное деление вирусов по морфологии. По строению оболочек они делятся на простые вирусы (вирус гепатита А) и сложные вирусы (вирусы гриппа, герпеса, ВИЧ).

Простые вирусы не имеют дополнительных оболочек, кроме капсида. Капсид складывается из белков. Которые могут образовывать мономерные структуры – капсомеры, которые затем при сборке вириона образуют цельный футляр. Некоторые простые вирусы могут формировать своеобразные белковые кристаллы (например, вирус ящура).

Замечание 2

Функция капсида – защита генетического материала вируса, а также участие в прикреплении вируса к клетке хозяина и проникновение нуклеиновой кислоты внутрь клетки. Большинство простых вирусов выходят из клетки, вызывая ее лизис - разрушение.

Сложные вирусы имеют дополнительную оболочку – суперкапсид, который представляет собой липидный бислой, отличающийся от цитоплазматической мембраны клетки-хозяина большим числом специфических липопротеинов. Кроме того, на поверхности оболочки вируса могут формироваться гликопротеиновые шипы.

Классификация вирусов

На данный момент широко используется классификация Д. Балтимора, которая основана на механизме синтеза вирусами мРНК. Она подразделяет вирусы на 7 группах. Таксономия вирусов включает семейства, подсемейство, род и вид. Виды вирусов не имеют биноминального названия, как у других организмов.

Замечание 3

Кроме того вирусы классифицируются по типу нуклеиновой кислоты (ДНК или РНК), ее структуре и количеству нитей, имеет значение размер и морфология вирионов, количество капсомеров, тип симметрии, наличие суперкапсида, чувствительность к химическим реагентам (дезинфицирующим средствам), место присутствия в клетке, антигенные свойства.

Значение для человека

Вирусы вызывают огромное количество самых разнообразных заболеваний и могут поражать живые организмы всех уровней от бактерий до человека. Эволюция вирусов идет параллельно с эволюцией хозяев. Кроме заболеваний человека и связанных с ним живых организмов, вирусы используются в качестве векторов нуклеиновых кислот в молекулярной биологии и помогаю классифицировать живые организмы.

© 2024 baraxlo2020.ru -- Немного о компьютере и современных гаджетах